Advanced Search
LIU Renpei, CHEN Lili, WEI Yanhong. Simulation of microstructure evolution of weld pool and heat-affected zone during TIG welding of nickel-base alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 64-68. DOI: 10.12073/j.hjxb.20190905006
Citation: LIU Renpei, CHEN Lili, WEI Yanhong. Simulation of microstructure evolution of weld pool and heat-affected zone during TIG welding of nickel-base alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 64-68. DOI: 10.12073/j.hjxb.20190905006

Simulation of microstructure evolution of weld pool and heat-affected zone during TIG welding of nickel-base alloy

More Information
  • Received Date: September 04, 2019
  • Available Online: July 12, 2020
  • Model for microstructure of molten pool and HAZ was developed based on the dendritic growth kinetics and the grain growth theory using the cellular automaton method.The temperature field during TIG welding process was calculated by the finite element model. And the thermal cycle curves were applied to the CA model to calculate the dendrite growth in the molten pool and grain growth in the heat-affected zone. The simulation results showed that the nuclei at the fusion boundary mainly grows in the form of columnar dendrite toward the center of the weld. The final morphology depends on the partially melted grains of base metal at the fusion boundary and competition growing between dendrite arrays with different orientation. The microstructure at the center of the molten pool was equiaxed dendrites. The grain growth in the heat-affected zone results in the columnar structure of the molten pool coarser. The simulation results agree well with the experimental results.
  • Wei H L, Elmer J W, Debroy T. Origin of grain orientation during solidification of an aluminum alloy[J]. Acta Materialia, 2016, 115: 123 − 131. doi: 10.1016/j.actamat.2016.05.057
    Li X Q, Hao B H, Chen Y X, et al. The microscopic mechanical performance for nonuniform welded joint of nickel-based alloy with nanoindentation[J]. China Welding, 2019, 28(2): 29 − 34.
    Pavlyk V, Dilthey U. Simulation of weld solidification microstructure and its coupling to the macroscopic heat and fluid flow modelling[J]. Modelling and Simulation in Materials Science and Engineering, 2004, 12(1): 33 − 45. doi: 10.1088/0965-0393/12/1/S03
    Zhan X H, Dong Z B, Wei Y H, et al. Simulation of grain morphologies and competitive growth in weld pool of Ni-Cr alloy[J]. Journal of Crystal Growth, 2009, 311(23−24): 4778 − 4783. doi: 10.1016/j.jcrysgro.2009.09.008
    Han R H, Dong W C, Lu S P, et al. Modeling of morphological evolution of columnar dendritic grains in the molten pool of gas tungsten arc welding[J]. Computational Materials Science, 2014, 95: 351 − 361. doi: 10.1016/j.commatsci.2014.07.052
    张敏, 徐蔼彦, 汪强, 等. Fe-C合金焊接熔池凝固过程CET转变的数值模拟[J]. 焊接学报, 2016, 37(2): 5 − 8.

    Zhang Min, Xu Aiyan, Wang Qiang, et al. Numerical simulation of CET transformation in the solidificationof Fe-C alloy weld pool[J]. Transactions of the China Welding Institution, 2016, 37(2): 5 − 8.
    张敏, 周玉兰, 薛覃, 等. Ti-45Al合金焊接熔池凝固过程数值模拟[J]. 焊接学报, 2018, 39(3): 6 − 10. doi: 10.12073/j.hjxb.2018390058

    Zhang Min, Zhou Yulan, Xue Qin, et al. Numerical simulation of solidification process of Ti-45Al alloy weld pool[J]. Transactions of the China Welding Institution, 2018, 39(3): 6 − 10. doi: 10.12073/j.hjxb.2018390058
    宋奎晶. TA15钛合金TIG焊热影响区组织模拟及力学本构关系研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
    Rappaz M, Gandin Ch A, Desbiolles J L, et al. Prediction of grain structures in various solidification processes[J]. Metallurgical and Materials Transactions A, 1996, 27(3): 695 − 705. doi: 10.1007/BF02648956
    Gu C, Wei Y H, Liu R P, et al. Effect of temperature and fluid flow on dendrite growth during solidification of Al-3 Wt Pct Cu alloy by the two-dimensional cellular automaton method[J]. Metallurgical and Materials Transactions B, 2017, 48(6): 3388 − 3400. doi: 10.1007/s11663-017-1060-3
    He Y Z, Ding H L, Liu L F, et al. Computer simulation of 2D grain growth using a cellular automata model based on the lowest energy principle[J]. Materials Science & Engineering A, 2006, 429(1-2): 236 − 246.
    金朝阳, 俞栋华, 吴欣桐. 热挤压态纯镁晶粒长大行为的元胞自动机模拟[J]. 塑性工程学报, 2016, 23(6): 216 − 222.

    Jin Zhaoyang, Yu Donghua, Wu Xintong. Simulation of grain growth behavior of hot-extruded pure magnesium by cellular automata[J]. Journal of Plasticity Engineering, 2016, 23(6): 216 − 222.
    陈晶, 李少华, 颜飞雪, 等. JMatPro软件在GH3039真空扩散焊工艺研究中的应用[J]. 热加工工艺, 2018, 47(11): 232−235.

    Chen Jing, Li Shaohua, Yan Feixue, et al. Application of JMatPro software in research of GH3039 vacuum diffusion welding process[J].Hot Working Technology, 2018, 47(11): 232−235.
    Dong Z B, Song K J, Wang S J, et al. Solute redistribution with shear flow in molten pool of Ni-Cr alloy[J]. Journal of Materials Science & Technology, 2011, 27(2): 183 − 188.

Catalog

    Article views (346) PDF downloads (31) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return