Citation: | LI Na, DU Suigeng, WANG Songlin, WANG Jinwei. Friction welding of TiAl alloy and superalloy GH3039[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(6): 6-11. DOI: 10.12073/j.hjxb.20190717003 |
杜随更, 傅莉, 王晋伟, 等. K418高温合金与42CrMo钢异种金属摩擦焊接头碳化物带形成机制[J]. 中国有色金属学报, 2003(2): 323 − 327. doi: 10.3321/j.issn:1004-0609.2003.02.009
Du Suigeng, Fu Li, Wang Jinwei, et al. Formation mechanism of carbide zone in K418 superalloy and 42CrMo steel dissimilar metal friction welded joint[J]. The Chinese Journal of Nonferrous Metals, 2003(2): 323 − 327. doi: 10.3321/j.issn:1004-0609.2003.02.009
|
Yue Hangyu, Chen Yuyong, Wang Xiaopeng, et al. Microstructure, texture and tensile properties of Ti-47Al-2Cr-2Nb alloy produced by selective electron beam melting[J]. Journal of Alloys and Compounds, 2018, 766: 450 − 459. doi: 10.1016/j.jallcom.2018.07.025
|
Xu Xiangjun, Lin Junpin, Guo Jian, et al. Friction weldability of a high Nb containing TiAl alloy[J]. Materials (Basel, Switzerland), 2019, 12(21): 3556 − 3562.
|
Simões Sónia, Soares Ana, Tavares Carlos José, et al. Joining of TiAl alloy using novel Ag-Cu sputtered coated Ti brazing filler[J]. Microscopy and microanalysis: the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada, 2018, 25(1): 1 − 4.
|
Sun Wei, Yang Fei, Kong Fantao, et al. Interface characteristics of Ti6Al4V-TiAl metal-intermetallic laminate (MIL) composites prepared by a novel hot-pack rolling[J]. Materials Characterization, 2018, 144: 173 − 181. doi: 10.1016/j.matchar.2018.07.010
|
姜明智, 朱春雷, 李海昭, 等. 改善K418合金套与TiAl合金轴过盈连接的稳定性研究[J]. 机械制造, 2014, 52(9): 56 − 58. doi: 10.3969/j.issn.1000-4998.2014.09.019
Jiang Mingzhi, Zhu Chunlei, Li Haizhao, et al. Study on improving the stability of the interference joint between K418 alloy sleeve and TiAl alloy rods[J]. Machinery, 2014, 52(9): 56 − 58. doi: 10.3969/j.issn.1000-4998.2014.09.019
|
Takuya Miyashita, Haruki Hino. Friction welding characteristics of TiAl intermetallic compounds[J]. Journal of the Japan Institute of Metals, 1994, 58(2): 215 − 220. doi: 10.2320/jinstmet1952.58.2_215
|
Ventzke V, Riekehr S, Horstmann M, et al. The development of the rotational friction welding process for the welding of γ-TiAl-casting alloy Ti-47Al-3[J]. Practical Metallography, 2014, 51(5): 321 − 352. doi: 10.3139/147.110266
|
赵全忠. TiAl金属间化合物与结构钢摩擦焊接技术研究[D]. 西安: 西北工业大学, 2000.
|
王忠平, 钟燕, 张立军, 等. TiAl金属间化合物与42CrMo“三体”摩擦焊成形控制[J]. 航空精密制造技术, 2005, 41(1): 50 − 53. doi: 10.3969/j.issn.1003-5451.2005.01.014
Wang Zhongping, Zhong Yan, Zhang Lijun, et al. Structural control of “three-body” friction welding of TiAl to 42CrMo[J]. Aviation Precision Manufacturing Technology, 2005, 41(1): 50 − 53. doi: 10.3969/j.issn.1003-5451.2005.01.014
|
王忠平, 张立军, 周正航. 中间层厚度对TiAl金属间化合物三体摩擦焊接性的影响[J]. 机械科学与技术, 2005, 24(3): 364 − 367. doi: 10.3321/j.issn:1003-8728.2005.03.032
Wang Zhongping, Zhang Lijun, Zhou Zhenghang. On the effect of the interlayer thickness on the three-body friction weldability of TiAl intermetallic compounds[J]. Mechanical Science and Technology, 2005, 24(3): 364 − 367. doi: 10.3321/j.issn:1003-8728.2005.03.032
|
Zhu Ying, Zhang Mo, Wang Guojian, et al. The effect of different crystal conditions of filler metal on vacuum brazing of TiAl alloy and 42CrMo[J]. China Welding, 2007, 16(4): 17 − 19.
|
Lee W B, Kim Y J, Jung S B. Effects of copper insert layer on the properties of friction welded joints between TiAl and AISI 4140 structural steel[J]. Intermetallics, 2004, 12(6): 671 − 678. doi: 10.1016/j.intermet.2004.02.004
|
Park J M, Kim K Y, Kim K K, et al. Effects of insert metal type on interfacial microstructure during dissimilar joining of TiAl alloy to SCM440 by friction welding[J]. Metals and Materials International, 2018, 23(3): 626 − 632.
|
Park S H, Kim K Y, Park J M, et al. Interfacial properties of friction-welded TiAl and SCM440 alloys with Cu as insert metal[J]. Korean Journal of Materials Research, 2019, 29(4): 258 − 263. doi: 10.3740/MRSK.2019.29.4.258
|
Kumar R, Balasubramanian M. Experimental investigation of Ti–6Al–4V titanium alloy and 304L stainless steel friction welded with copper interlayer[J]. Defence Technology, 2015, 11(1): 65 − 75. doi: 10.1016/j.dt.2014.10.001
|
Dong Honggang, Yu Lianzhen, Deng Dewei, et al. Direct friction welding of TiAl alloy to 42CrMo steel rods[J]. Materials and Manufacturing Processes, 2015, 30(9): 1104 − 1108. doi: 10.1080/10426914.2014.973576
|
Dong Honggang, Yu Lianzhen, Gao Hongming, et al. Microstructure and mechanical properties of friction welds between TiAl alloy and 40Cr steel rods[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(10): 3126 − 3133. doi: 10.1016/S1003-6326(14)63451-8
|
李玉龙, 吕明阳, 冯吉才, 等. 生成相性质及其对TiAl合金/42CrMo钢钎焊接头力学性能影响[J]. 焊接学报, 2014, 35(1): 41 − 44.
Li Yulong, Lü Mingyang, Feng Jicai, et al. Characteristics of reaction phases and effects of phases on mechanical properties of TiAl/42CrMo steel brazed joint[J]. Transactions of the China Welding Institution, 2014, 35(1): 41 − 44.
|
[1] | FENG Yulan, WU Zhisheng, SUN Zhiyu. Numerical simulation of the influence of thickness of cladding material on stress and strain of welded joint of stainless steel composite plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(1): 73-82. DOI: 10.12073/j.hjxb.20230606001 |
[2] | JIANG Shuying, CAI Chang, ZHAO Ming, HUANG Wanqun. Microstructure and properties of Q235 steel/6061 aluminum alloy resistance spot welding joint based on high-entropy alloy interlayer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 71-78. DOI: 10.12073/j.hjxb.20220826002 |
[3] | GUI Xiaoyan, ZHANG Yanxi, YOU Deyong, GAO Xiangdong. Numerical simulation and test for influence of laser arc hybrid welding sequence on 304 stainless steel T-joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 34-39. DOI: 10.12073/j.hjxb.20210324005 |
[4] | ZHOU Li, ZHANG Renxiao, SHU Fengyuan, HUANG Yongxian, FENG Jicai. Microstructure and mechanical properties of friction stir welded joint of Q235 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 80-84. DOI: 10.12073/j.hjxb.2019400076 |
[5] | HUANG Bensheng, CHEN Quan, YANG Jiang, LIU Ge, YI Hongyu. Numerical simulation of welding residual stress and distortion in Q345/316L dissimilar steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 138-144. DOI: 10.12073/j.hjxb.2019400057 |
[6] | WANG Houqin, ZHANG Binggang, WANG Ting, FENG Jicai. Numerical simulation of molten pool flow behavior in stationary electron beam welding of 304 stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 57-61. |
[7] | SUN Fangfang, LI Mengsheng, WANG Yang, ZHAO Ying. Numerical simulation on 201 stainless steel spot welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (2): 21-24. |
[8] | WANG Jianmin, ZHU Xi, LIU Runquan. Three dimensional numerical simulation for explosive welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (5): 109-112. |
[9] | Liu Renpei, Dong Zujue, Wei Yanhong. Numerical Simulation Model of Stress-strain Distributions for Weld Metal Solidification Cracking in Stainless Steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (4): 238-243. |
[10] | Wei Yanhong, Liu Renpei, Dong Zujue. Numerical Simulation of Temperature Fields for Weld Metal Solidification Cracking in Stainless Steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (3): 199-204. |
1. |
侯东旭,殷子强,陈培敦,夏佃秀,王守仁. 不同活化剂对超薄板脉冲激光焊焊接接头组织及性能的影响. 电焊机. 2025(03): 48-57 .
![]() | |
2. |
郭广飞,任明皓,姜恒,吴锴,汪志福,章小浒. 热输入对低温高锰钢焊接接头组织和性能的影响. 机械工程材料. 2025(03): 94-99 .
![]() | |
3. |
邬亲丹,林毅,官忠波,杨飞,朱宇霆. 回火对E101T1-K3C熔敷金属显微组织和力学性能的影响. 机械制造文摘(焊接分册). 2024(01): 1-5+11 .
![]() | |
4. |
曾道平,郑韶先,安同邦,代海洋,马成勇. 440 MPa级高强钢焊条熔敷金属组织与低温冲击韧性研究. 焊接学报. 2024(03): 120-128+136 .
![]() | |
5. |
代海洋,贺建芸,付俊杰,杜立强,魏靖柠,左月,安同邦. 热输入对440 MPa级HSLA钢埋弧焊对接接头组织及性能的影响. 电焊机. 2024(05): 52-59 .
![]() | |
6. |
汤忖江,安同邦,彭云,林纯丞,马成勇,刘旭明. 焊接热输入对690 MPa级HSLA钢焊缝金属组织与力学性能的影响. 焊接学报. 2024(09): 110-119 .
![]() |