Advanced Search
LI Fuxiang, WANG Jianbin, YE Changsheng, LIN Qiaoli. Wetting behavior of Cu6Sn5 IMC by molten Sn[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 33-37. DOI: 10.12073/j.hjxb.20190628001
Citation: LI Fuxiang, WANG Jianbin, YE Changsheng, LIN Qiaoli. Wetting behavior of Cu6Sn5 IMC by molten Sn[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 33-37. DOI: 10.12073/j.hjxb.20190628001

Wetting behavior of Cu6Sn5 IMC by molten Sn

More Information
  • Received Date: June 27, 2019
  • Available Online: July 12, 2020
  • Wetting behavior between the molten Sn and Cu6Sn5 and Cu under the temperature 350 ~ 450 ℃ was studied using the modified sessile drop method in the high vacuum. The results show that the IMCs substrates coated with a thin Au film have the better wettability than that of Sn/Cu system under the tested temperatures. The oxide film on the surface of metallic substrate is the key factor for wetting process. The thin passivation Au film on surface after ion-sputtering can be an effective method to improve the wettability and control the IMC thickness at interface. The mechanism of wettability improvement is the reaction between Sn and the oxide film. The precipitated IMC at interface or the melt process of IMC is not the main factor for spreading. All spreading dynamics show the near-linear variation, which can be described by the reaction-limited spreading model. The calculated wetting activation energies are 20.469 kJ/mol and 22.270 kJ/mol for Sn/Cu6Sn5 and Sn/Cu, respectively.
  • Cornelius B, Treivish S, Rosenthal Y, et al. The phenomenon of tin pest: a review[J]. Microelectronics Reliability, 2017, 79: 175 − 192. doi: 10.1016/j.microrel.2017.10.030
    王慧, 薛松柏, 陈文学, 等. Ag, Al, Ga对Sn-9Zn无铅钎料润湿性能的影响[J]. 焊接学报, 2007, 28(8): 33 − 36. doi: 10.3321/j.issn:0253-360x.2007.08.009

    Wang Hui, Xue Songbai, Chen Wenxue, et al. Effect of Ag, Al, Ga addition on wettability of Sn-9Zn lead-free solder[J]. Transactions of the China Welding Institution, 2007, 28(8): 33 − 36. doi: 10.3321/j.issn:0253-360x.2007.08.009
    Cheng S, Huang C M, Pecht M. A review of lead-free solders for electronics applications[J]. Microelectronics Reliability, 2017, 75: 77 − 95. doi: 10.1016/j.microrel.2017.06.016
    Kang Yuqing, Shen Haoran, Fu Yang, et al. Microstructure evolution and mechanical properties of the Sip/Zn-Al composite joints by ultrasonic-assisted soldering in air[J]. China Welding, 2018, 17(2): 39 − 44.
    张亮, Tu K N, 孙磊, 等. Sn-0.3Ag-0.7Cu-xSb无铅钎料润湿性[J]. 焊接学报, 2015, 36(1): 59 − 62.

    Zhang Liang, Tu K N, Sun Lei, et al. Wettability of Sn-0.3Ag-0.7Cu-xSb lead-free solders[J]. Transactions of the China Welding Institution, 2015, 36(1): 59 − 62.
    曾承宗, 林巧力, 曹睿, 等. 冷金属过渡下熔融铝合金在钢板上润湿铺展的数值模拟[J]. 焊接学报, 2017, 38(3): 61 − 65.

    Zeng Chengzong, Lin Qiaoli, Cao Rui, et al. Simulation of spreading of molten Al alloy on Q235 steel under the cold metal transfer condition[J]. Transactions of the China Welding Institution, 2017, 38(3): 61 − 65.
    Eustathopoulos N, Nicholas M G, Drevet B. Wettability at high temperatures[M]. Oxford: Elsevier, 1999.
    Wedi A, Baither D, Schmitz G. Contact angle and reactive wetting in the SnPb/Cu system[J]. Scripta Materialia, 2011, 64(7): 689 − 692. doi: 10.1016/j.scriptamat.2010.12.026
    Satyanarayana, Prabhu K N. Study of reactive wetting of Sn-0.7Cu and Sn-0.3Ag-0.7Cu lead free solders during solidification on nickel coated Al substrates[J]. International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 2013, 7: 25 − 28.
    Wang H, Gao F, Ma X, et al. Reactive wetting of solders on Cu and Cu6Sn5/Cu3Sn/Cu substrates using wetting balance[J]. Scripta Materialia, 2006, 55(9): 823 − 826. doi: 10.1016/j.scriptamat.2006.07.017
    Hosking M, Yost F G. The mechanics of solder alloy wetting and spreading [M]. New York: Springer Science & Business Media, 2012.
    Yost F G, Romig A D. Thermodynamics of wetting by liquid metals[M]. Pittsburgh: Materials Research Society, 1988.
    Sobiech M, Krüger C, Welzel U, et al. Phase formation at the Sn/Cu interface during room temperature aging: Microstructural evolution, whiskering, and interface thermodynamics[J]. Journal of Materials Research, 2011, 26(12): 1482 − 1493. doi: 10.1557/jmr.2011.162
    Salleh M A A M, Mcdonald S D, Yasuda H, et al. Rapid Cu6Sn5 growth at liquid Sn/solid Cu interfaces[J]. Scripta Materialia, 2015, 100: 17 − 20. doi: 10.1016/j.scriptamat.2014.11.039
    Huang M L, Yang F, Zhao N, et al. In situ study on dissolution and growth mechanism of interfacial Cu6Sn5 in wetting reaction[J]. Materials Letters, 2015, 139: 42 − 45. doi: 10.1016/j.matlet.2014.10.041
    Volmer M, Weber A. Keimbildung in übersättigten Gebilden[J]. Zeitschrift für physikalische Chemie, 1926, 119(1): 277 − 301.
    Bondy A. The spreading of liquid metals on solid surfaces[J]. Chemical Reviews, 1953(2): 417 − 458.
    Bader S, Gust W, Hieber H. Rapid formation of intermetallic compounds interdiffusion in the Cu-Sn and Ni-Sn systems[J]. Acta Metallurgica Et Materialia, 1995, 43(1): 329 − 337.
    Jena A K, Chaturvedi M C. Phase transformation in materials[M]. New Jersey: Prentice Hall, 1992.
    Gagliano R A, Ghosh G, Fine M E. Nucleation kinetics of Cu6Sn5 by reaction of molten tin with a copper substrate[J]. Journal of Electronic Materials, 2002, 31(11): 1195 − 1202. doi: 10.1007/s11664-002-0010-1
  • Related Articles

    [1]WANG Huaishen, CHEN Lei, ZHANG Hongxia, CHAI Fei, YAN Xiaoying, DONG Peng. Microstructure and corrosion behavior of selective laser melting Ti-6Al-4V alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240106001
    [2]GE Yaqiong, SONG Yue, CHANG Zexin, HOU Qingling, XU Haijun, QIAO Jianfu, HOU Min. Forming Quality and Microstructure of Al0.5CoCrFeNi Bulk High-Entropy Alloy Fabricated by Selective Laser Melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20231128003
    [3]WANG Qun, QU Yuntao, ZHANG Biao, ZHANG Yuxian, LI Rui, LI Ning, YAN Jiazhen. Bending fatigue behavior of biomedical Ti-6Al-4V alloy prepared by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 57-64. DOI: 10.12073/j.hjxb.20230421001
    [4]ZHU Jie, ZHOU Qingjun, CHEN Xiaohui, FENG Kai, LI Zhuguo. Influence of layer thickness on the microstructure and mechanical properties of selective laser melting processed GH3625[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 12-17. DOI: 10.12073/j.hjxb.20230306002
    [5]CHEN Yanxing, LIU Xiuguo, ZHAO Yangyang, GONG Baoming, WANG Ying, LI Chengning. Microstructure and dynamic fracture behaviors of 17-4PH stainless steel fabricated by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(2): 1-9. DOI: 10.12073/j.hjxb.20220306001
    [6]BA Peipei, DONG Zhihong, ZHANG Wei, PENG Xiao. Microstructure and mechanical properties of 12CrNi2 alloy steel manufactured by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 8-17. DOI: 10.12073/j.hjxb.20210323003
    [7]ZHANG Yu, JIANG Yun, HU Xiaoan. Microstructure and high temperature creep properties of Inconel 625 alloy by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 78-84. DOI: 10.12073/j.hjxb.20191211001
    [8]YANG Tianyu, ZHANG Penglin, YIN Yan, LIU Wenzhao, ZHANG Ruihua. Microstructure based on selective laser melting and mechanical properties prediction through artificial neural net[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 100-106. DOI: 10.12073/j.hjxb.2019400162
    [9]YIN Yan<sup>1</sup>, LIU Pengyu<sup>1</sup>, LU Chao<sup>2</sup>, XIAO Mengzhi<sup>1,3</sup>, ZHANG Ruihua<sup>2,3</sup>. Microstructure and tensile properties of selective laser melting forming 316L stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(8): 77-81. DOI: 10.12073/j.hjxb.2018390205
    [10]CAO Jian, FENG Ji-cai, LI Zhuo-ran. Selection of interlayer for field-assisted self-propagated high temperature joining of TiAl alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 1-4.

Catalog

    Article views (515) PDF downloads (30) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return