Citation: | LI Fuxiang, WANG Jianbin, YE Changsheng, LIN Qiaoli. Wetting behavior of Cu6Sn5 IMC by molten Sn[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 33-37. DOI: 10.12073/j.hjxb.20190628001 |
Cornelius B, Treivish S, Rosenthal Y, et al. The phenomenon of tin pest: a review[J]. Microelectronics Reliability, 2017, 79: 175 − 192. doi: 10.1016/j.microrel.2017.10.030
|
王慧, 薛松柏, 陈文学, 等. Ag, Al, Ga对Sn-9Zn无铅钎料润湿性能的影响[J]. 焊接学报, 2007, 28(8): 33 − 36. doi: 10.3321/j.issn:0253-360x.2007.08.009
Wang Hui, Xue Songbai, Chen Wenxue, et al. Effect of Ag, Al, Ga addition on wettability of Sn-9Zn lead-free solder[J]. Transactions of the China Welding Institution, 2007, 28(8): 33 − 36. doi: 10.3321/j.issn:0253-360x.2007.08.009
|
Cheng S, Huang C M, Pecht M. A review of lead-free solders for electronics applications[J]. Microelectronics Reliability, 2017, 75: 77 − 95. doi: 10.1016/j.microrel.2017.06.016
|
Kang Yuqing, Shen Haoran, Fu Yang, et al. Microstructure evolution and mechanical properties of the Sip/Zn-Al composite joints by ultrasonic-assisted soldering in air[J]. China Welding, 2018, 17(2): 39 − 44.
|
张亮, Tu K N, 孙磊, 等. Sn-0.3Ag-0.7Cu-xSb无铅钎料润湿性[J]. 焊接学报, 2015, 36(1): 59 − 62.
Zhang Liang, Tu K N, Sun Lei, et al. Wettability of Sn-0.3Ag-0.7Cu-xSb lead-free solders[J]. Transactions of the China Welding Institution, 2015, 36(1): 59 − 62.
|
曾承宗, 林巧力, 曹睿, 等. 冷金属过渡下熔融铝合金在钢板上润湿铺展的数值模拟[J]. 焊接学报, 2017, 38(3): 61 − 65.
Zeng Chengzong, Lin Qiaoli, Cao Rui, et al. Simulation of spreading of molten Al alloy on Q235 steel under the cold metal transfer condition[J]. Transactions of the China Welding Institution, 2017, 38(3): 61 − 65.
|
Eustathopoulos N, Nicholas M G, Drevet B. Wettability at high temperatures[M]. Oxford: Elsevier, 1999.
|
Wedi A, Baither D, Schmitz G. Contact angle and reactive wetting in the SnPb/Cu system[J]. Scripta Materialia, 2011, 64(7): 689 − 692. doi: 10.1016/j.scriptamat.2010.12.026
|
Satyanarayana, Prabhu K N. Study of reactive wetting of Sn-0.7Cu and Sn-0.3Ag-0.7Cu lead free solders during solidification on nickel coated Al substrates[J]. International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 2013, 7: 25 − 28.
|
Wang H, Gao F, Ma X, et al. Reactive wetting of solders on Cu and Cu6Sn5/Cu3Sn/Cu substrates using wetting balance[J]. Scripta Materialia, 2006, 55(9): 823 − 826. doi: 10.1016/j.scriptamat.2006.07.017
|
Hosking M, Yost F G. The mechanics of solder alloy wetting and spreading [M]. New York: Springer Science & Business Media, 2012.
|
Yost F G, Romig A D. Thermodynamics of wetting by liquid metals[M]. Pittsburgh: Materials Research Society, 1988.
|
Sobiech M, Krüger C, Welzel U, et al. Phase formation at the Sn/Cu interface during room temperature aging: Microstructural evolution, whiskering, and interface thermodynamics[J]. Journal of Materials Research, 2011, 26(12): 1482 − 1493. doi: 10.1557/jmr.2011.162
|
Salleh M A A M, Mcdonald S D, Yasuda H, et al. Rapid Cu6Sn5 growth at liquid Sn/solid Cu interfaces[J]. Scripta Materialia, 2015, 100: 17 − 20. doi: 10.1016/j.scriptamat.2014.11.039
|
Huang M L, Yang F, Zhao N, et al. In situ study on dissolution and growth mechanism of interfacial Cu6Sn5 in wetting reaction[J]. Materials Letters, 2015, 139: 42 − 45. doi: 10.1016/j.matlet.2014.10.041
|
Volmer M, Weber A. Keimbildung in übersättigten Gebilden[J]. Zeitschrift für physikalische Chemie, 1926, 119(1): 277 − 301.
|
Bondy A. The spreading of liquid metals on solid surfaces[J]. Chemical Reviews, 1953(2): 417 − 458.
|
Bader S, Gust W, Hieber H. Rapid formation of intermetallic compounds interdiffusion in the Cu-Sn and Ni-Sn systems[J]. Acta Metallurgica Et Materialia, 1995, 43(1): 329 − 337.
|
Jena A K, Chaturvedi M C. Phase transformation in materials[M]. New Jersey: Prentice Hall, 1992.
|
Gagliano R A, Ghosh G, Fine M E. Nucleation kinetics of Cu6Sn5 by reaction of molten tin with a copper substrate[J]. Journal of Electronic Materials, 2002, 31(11): 1195 − 1202. doi: 10.1007/s11664-002-0010-1
|
[1] | WANG Huaishen, CHEN Lei, ZHANG Hongxia, CHAI Fei, YAN Xiaoying, DONG Peng. Microstructure and corrosion behavior of selective laser melting Ti-6Al-4V alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240106001 |
[2] | GE Yaqiong, SONG Yue, CHANG Zexin, HOU Qingling, XU Haijun, QIAO Jianfu, HOU Min. Forming Quality and Microstructure of Al0.5CoCrFeNi Bulk High-Entropy Alloy Fabricated by Selective Laser Melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20231128003 |
[3] | WANG Qun, QU Yuntao, ZHANG Biao, ZHANG Yuxian, LI Rui, LI Ning, YAN Jiazhen. Bending fatigue behavior of biomedical Ti-6Al-4V alloy prepared by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 57-64. DOI: 10.12073/j.hjxb.20230421001 |
[4] | ZHU Jie, ZHOU Qingjun, CHEN Xiaohui, FENG Kai, LI Zhuguo. Influence of layer thickness on the microstructure and mechanical properties of selective laser melting processed GH3625[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 12-17. DOI: 10.12073/j.hjxb.20230306002 |
[5] | CHEN Yanxing, LIU Xiuguo, ZHAO Yangyang, GONG Baoming, WANG Ying, LI Chengning. Microstructure and dynamic fracture behaviors of 17-4PH stainless steel fabricated by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(2): 1-9. DOI: 10.12073/j.hjxb.20220306001 |
[6] | BA Peipei, DONG Zhihong, ZHANG Wei, PENG Xiao. Microstructure and mechanical properties of 12CrNi2 alloy steel manufactured by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 8-17. DOI: 10.12073/j.hjxb.20210323003 |
[7] | ZHANG Yu, JIANG Yun, HU Xiaoan. Microstructure and high temperature creep properties of Inconel 625 alloy by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 78-84. DOI: 10.12073/j.hjxb.20191211001 |
[8] | YANG Tianyu, ZHANG Penglin, YIN Yan, LIU Wenzhao, ZHANG Ruihua. Microstructure based on selective laser melting and mechanical properties prediction through artificial neural net[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 100-106. DOI: 10.12073/j.hjxb.2019400162 |
[9] | YIN Yan<sup>1</sup>, LIU Pengyu<sup>1</sup>, LU Chao<sup>2</sup>, XIAO Mengzhi<sup>1,3</sup>, ZHANG Ruihua<sup>2,3</sup>. Microstructure and tensile properties of selective laser melting forming 316L stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(8): 77-81. DOI: 10.12073/j.hjxb.2018390205 |
[10] | CAO Jian, FENG Ji-cai, LI Zhuo-ran. Selection of interlayer for field-assisted self-propagated high temperature joining of TiAl alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 1-4. |