Citation: | LI Fuxiang, WANG Jianbin, YE Changsheng, LIN Qiaoli. Wetting behavior of Cu6Sn5 IMC by molten Sn[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 33-37. DOI: 10.12073/j.hjxb.20190628001 |
Cornelius B, Treivish S, Rosenthal Y, et al. The phenomenon of tin pest: a review[J]. Microelectronics Reliability, 2017, 79: 175 − 192. doi: 10.1016/j.microrel.2017.10.030
|
王慧, 薛松柏, 陈文学, 等. Ag, Al, Ga对Sn-9Zn无铅钎料润湿性能的影响[J]. 焊接学报, 2007, 28(8): 33 − 36. doi: 10.3321/j.issn:0253-360x.2007.08.009
Wang Hui, Xue Songbai, Chen Wenxue, et al. Effect of Ag, Al, Ga addition on wettability of Sn-9Zn lead-free solder[J]. Transactions of the China Welding Institution, 2007, 28(8): 33 − 36. doi: 10.3321/j.issn:0253-360x.2007.08.009
|
Cheng S, Huang C M, Pecht M. A review of lead-free solders for electronics applications[J]. Microelectronics Reliability, 2017, 75: 77 − 95. doi: 10.1016/j.microrel.2017.06.016
|
Kang Yuqing, Shen Haoran, Fu Yang, et al. Microstructure evolution and mechanical properties of the Sip/Zn-Al composite joints by ultrasonic-assisted soldering in air[J]. China Welding, 2018, 17(2): 39 − 44.
|
张亮, Tu K N, 孙磊, 等. Sn-0.3Ag-0.7Cu-xSb无铅钎料润湿性[J]. 焊接学报, 2015, 36(1): 59 − 62.
Zhang Liang, Tu K N, Sun Lei, et al. Wettability of Sn-0.3Ag-0.7Cu-xSb lead-free solders[J]. Transactions of the China Welding Institution, 2015, 36(1): 59 − 62.
|
曾承宗, 林巧力, 曹睿, 等. 冷金属过渡下熔融铝合金在钢板上润湿铺展的数值模拟[J]. 焊接学报, 2017, 38(3): 61 − 65.
Zeng Chengzong, Lin Qiaoli, Cao Rui, et al. Simulation of spreading of molten Al alloy on Q235 steel under the cold metal transfer condition[J]. Transactions of the China Welding Institution, 2017, 38(3): 61 − 65.
|
Eustathopoulos N, Nicholas M G, Drevet B. Wettability at high temperatures[M]. Oxford: Elsevier, 1999.
|
Wedi A, Baither D, Schmitz G. Contact angle and reactive wetting in the SnPb/Cu system[J]. Scripta Materialia, 2011, 64(7): 689 − 692. doi: 10.1016/j.scriptamat.2010.12.026
|
Satyanarayana, Prabhu K N. Study of reactive wetting of Sn-0.7Cu and Sn-0.3Ag-0.7Cu lead free solders during solidification on nickel coated Al substrates[J]. International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 2013, 7: 25 − 28.
|
Wang H, Gao F, Ma X, et al. Reactive wetting of solders on Cu and Cu6Sn5/Cu3Sn/Cu substrates using wetting balance[J]. Scripta Materialia, 2006, 55(9): 823 − 826. doi: 10.1016/j.scriptamat.2006.07.017
|
Hosking M, Yost F G. The mechanics of solder alloy wetting and spreading [M]. New York: Springer Science & Business Media, 2012.
|
Yost F G, Romig A D. Thermodynamics of wetting by liquid metals[M]. Pittsburgh: Materials Research Society, 1988.
|
Sobiech M, Krüger C, Welzel U, et al. Phase formation at the Sn/Cu interface during room temperature aging: Microstructural evolution, whiskering, and interface thermodynamics[J]. Journal of Materials Research, 2011, 26(12): 1482 − 1493. doi: 10.1557/jmr.2011.162
|
Salleh M A A M, Mcdonald S D, Yasuda H, et al. Rapid Cu6Sn5 growth at liquid Sn/solid Cu interfaces[J]. Scripta Materialia, 2015, 100: 17 − 20. doi: 10.1016/j.scriptamat.2014.11.039
|
Huang M L, Yang F, Zhao N, et al. In situ study on dissolution and growth mechanism of interfacial Cu6Sn5 in wetting reaction[J]. Materials Letters, 2015, 139: 42 − 45. doi: 10.1016/j.matlet.2014.10.041
|
Volmer M, Weber A. Keimbildung in übersättigten Gebilden[J]. Zeitschrift für physikalische Chemie, 1926, 119(1): 277 − 301.
|
Bondy A. The spreading of liquid metals on solid surfaces[J]. Chemical Reviews, 1953(2): 417 − 458.
|
Bader S, Gust W, Hieber H. Rapid formation of intermetallic compounds interdiffusion in the Cu-Sn and Ni-Sn systems[J]. Acta Metallurgica Et Materialia, 1995, 43(1): 329 − 337.
|
Jena A K, Chaturvedi M C. Phase transformation in materials[M]. New Jersey: Prentice Hall, 1992.
|
Gagliano R A, Ghosh G, Fine M E. Nucleation kinetics of Cu6Sn5 by reaction of molten tin with a copper substrate[J]. Journal of Electronic Materials, 2002, 31(11): 1195 − 1202. doi: 10.1007/s11664-002-0010-1
|
[1] | YANG Jing, XUE Peng, ZHANG Yongfeng, FANG Xu, JIANG Chenyu, SHI Kai. Microstructure and properties of boron carbide ceramic brazed joints with high nitrogen steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(5): 113-118. DOI: 10.12073/j.hjxb.20230601001 |
[2] | FANG Naiwen, HUANG Ruisheng, YAN Dejun, YANG Yicheng, MA Yiming, LENG Bing. Effect of welding heatinput on microstructure and properties of MAG welded joint for low nickel high nitrogen austenitic stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 70-75. DOI: 10.12073/j.hjxb.20200502001 |
[3] | MING Zhu, WANG Kehong, WANG Wei, WANG Youqi. Effect of cooling rate on the microstructure and mechanical properties of high nitrogen stainless steel weld metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 31-35. DOI: 10.12073/j.hjxb.2019400259 |
[4] | MING Zhu, WANG Kehong, WANG Wei, FAN Chenglei, WANG Youqi. Effects of nitrogen content and welding current on microstructure and properties of the weld of high nitrogen austenite steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(1): 104-108. DOI: 10.12073/j.hjxb.2019400021 |
[5] | LI Dayong, YANG Dongqing, WANG Ping, ZHANG Guangjun. Analysis on microstructure and properties of under-matching weld joint of high strength steel 10Ni5CrMoV[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(5): 87-91. DOI: 10.12073/j.hjxb.20170519 |
[6] | JING Hao, WANG Kehong, QIANG Wei, KONG Jian. Influence of N-content on microstructure and mechanical properties of PMIG welding joints of high nitrogen steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(4): 95-98. DOI: 10.12073/j.hjxb.20170422 |
[7] | ZHAO Hongyun, LIU Hongwei. Microstructure and properties of TIG welded 22MnB5 ultra high strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(2): 67-69,78. |
[8] | ZHAO Lin, TIAN Zhiling, PENG Yun, XU Lianghong, LI Ran. Laser welding of high nitrogen steel 1Cr22Mn16N Ⅲ.Microstructure and mechanical properties of welding heat-affected zone[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (12): 26-30. |
[9] | ZHAO Lin, TIAN Zhiling, PENG Yun, ZHAO Xiaobing, QI Yanchang. Laser welding of high nitrogen steel 1Cr22Mn16N-Ⅱ.microstructure and mechanical properties of weld metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (9): 80-82,86. |
[10] | FU Rui-dong, LI Liang-yu, ZHENG Yang-zeng. TIG Welding of High Manganese Austenitic Steel for Super Cryogenic Application[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (3): 21-24. |
1. |
周凡,顾介仁,王克鸿. 等离子弧增材交织结构的组织与力学性能. 焊接. 2023(01): 16-21 .
![]() | |
2. |
李文斌. 城市轨道交通车辆高强钢焊接用焊丝的选用方法. 焊接技术. 2022(03): 80-83 .
![]() | |
3. |
周杰,张明渝,李志洋,张建,范霁康,王克鸿. 高氮不锈钢与675高强钢焊接接头微观组织与力学性能. 焊接. 2022(02): 6-10 .
![]() | |
4. |
杨东青,张建,范霁康,周赵,王克鸿. 高氮奥氏体不锈钢与603马氏体高强钢焊接接头组织及性能. 兵工学报. 2022(08): 1990-1997 .
![]() | |
5. |
郭顺,王鹏翔,周琦,朱军,顾介仁. 等离子弧增材制造双金属交织结构微观组织及力学性能. 焊接学报. 2021(03): 14-19+98 .
![]() |