Advanced Search
LI Fuxiang, WANG Jianbin, YE Changsheng, LIN Qiaoli. Wetting behavior of Cu6Sn5 IMC by molten Sn[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 33-37. DOI: 10.12073/j.hjxb.20190628001
Citation: LI Fuxiang, WANG Jianbin, YE Changsheng, LIN Qiaoli. Wetting behavior of Cu6Sn5 IMC by molten Sn[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 33-37. DOI: 10.12073/j.hjxb.20190628001

Wetting behavior of Cu6Sn5 IMC by molten Sn

More Information
  • Received Date: June 27, 2019
  • Available Online: July 12, 2020
  • Wetting behavior between the molten Sn and Cu6Sn5 and Cu under the temperature 350 ~ 450 ℃ was studied using the modified sessile drop method in the high vacuum. The results show that the IMCs substrates coated with a thin Au film have the better wettability than that of Sn/Cu system under the tested temperatures. The oxide film on the surface of metallic substrate is the key factor for wetting process. The thin passivation Au film on surface after ion-sputtering can be an effective method to improve the wettability and control the IMC thickness at interface. The mechanism of wettability improvement is the reaction between Sn and the oxide film. The precipitated IMC at interface or the melt process of IMC is not the main factor for spreading. All spreading dynamics show the near-linear variation, which can be described by the reaction-limited spreading model. The calculated wetting activation energies are 20.469 kJ/mol and 22.270 kJ/mol for Sn/Cu6Sn5 and Sn/Cu, respectively.
  • Cornelius B, Treivish S, Rosenthal Y, et al. The phenomenon of tin pest: a review[J]. Microelectronics Reliability, 2017, 79: 175 − 192. doi: 10.1016/j.microrel.2017.10.030
    王慧, 薛松柏, 陈文学, 等. Ag, Al, Ga对Sn-9Zn无铅钎料润湿性能的影响[J]. 焊接学报, 2007, 28(8): 33 − 36. doi: 10.3321/j.issn:0253-360x.2007.08.009

    Wang Hui, Xue Songbai, Chen Wenxue, et al. Effect of Ag, Al, Ga addition on wettability of Sn-9Zn lead-free solder[J]. Transactions of the China Welding Institution, 2007, 28(8): 33 − 36. doi: 10.3321/j.issn:0253-360x.2007.08.009
    Cheng S, Huang C M, Pecht M. A review of lead-free solders for electronics applications[J]. Microelectronics Reliability, 2017, 75: 77 − 95. doi: 10.1016/j.microrel.2017.06.016
    Kang Yuqing, Shen Haoran, Fu Yang, et al. Microstructure evolution and mechanical properties of the Sip/Zn-Al composite joints by ultrasonic-assisted soldering in air[J]. China Welding, 2018, 17(2): 39 − 44.
    张亮, Tu K N, 孙磊, 等. Sn-0.3Ag-0.7Cu-xSb无铅钎料润湿性[J]. 焊接学报, 2015, 36(1): 59 − 62.

    Zhang Liang, Tu K N, Sun Lei, et al. Wettability of Sn-0.3Ag-0.7Cu-xSb lead-free solders[J]. Transactions of the China Welding Institution, 2015, 36(1): 59 − 62.
    曾承宗, 林巧力, 曹睿, 等. 冷金属过渡下熔融铝合金在钢板上润湿铺展的数值模拟[J]. 焊接学报, 2017, 38(3): 61 − 65.

    Zeng Chengzong, Lin Qiaoli, Cao Rui, et al. Simulation of spreading of molten Al alloy on Q235 steel under the cold metal transfer condition[J]. Transactions of the China Welding Institution, 2017, 38(3): 61 − 65.
    Eustathopoulos N, Nicholas M G, Drevet B. Wettability at high temperatures[M]. Oxford: Elsevier, 1999.
    Wedi A, Baither D, Schmitz G. Contact angle and reactive wetting in the SnPb/Cu system[J]. Scripta Materialia, 2011, 64(7): 689 − 692. doi: 10.1016/j.scriptamat.2010.12.026
    Satyanarayana, Prabhu K N. Study of reactive wetting of Sn-0.7Cu and Sn-0.3Ag-0.7Cu lead free solders during solidification on nickel coated Al substrates[J]. International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 2013, 7: 25 − 28.
    Wang H, Gao F, Ma X, et al. Reactive wetting of solders on Cu and Cu6Sn5/Cu3Sn/Cu substrates using wetting balance[J]. Scripta Materialia, 2006, 55(9): 823 − 826. doi: 10.1016/j.scriptamat.2006.07.017
    Hosking M, Yost F G. The mechanics of solder alloy wetting and spreading [M]. New York: Springer Science & Business Media, 2012.
    Yost F G, Romig A D. Thermodynamics of wetting by liquid metals[M]. Pittsburgh: Materials Research Society, 1988.
    Sobiech M, Krüger C, Welzel U, et al. Phase formation at the Sn/Cu interface during room temperature aging: Microstructural evolution, whiskering, and interface thermodynamics[J]. Journal of Materials Research, 2011, 26(12): 1482 − 1493. doi: 10.1557/jmr.2011.162
    Salleh M A A M, Mcdonald S D, Yasuda H, et al. Rapid Cu6Sn5 growth at liquid Sn/solid Cu interfaces[J]. Scripta Materialia, 2015, 100: 17 − 20. doi: 10.1016/j.scriptamat.2014.11.039
    Huang M L, Yang F, Zhao N, et al. In situ study on dissolution and growth mechanism of interfacial Cu6Sn5 in wetting reaction[J]. Materials Letters, 2015, 139: 42 − 45. doi: 10.1016/j.matlet.2014.10.041
    Volmer M, Weber A. Keimbildung in übersättigten Gebilden[J]. Zeitschrift für physikalische Chemie, 1926, 119(1): 277 − 301.
    Bondy A. The spreading of liquid metals on solid surfaces[J]. Chemical Reviews, 1953(2): 417 − 458.
    Bader S, Gust W, Hieber H. Rapid formation of intermetallic compounds interdiffusion in the Cu-Sn and Ni-Sn systems[J]. Acta Metallurgica Et Materialia, 1995, 43(1): 329 − 337.
    Jena A K, Chaturvedi M C. Phase transformation in materials[M]. New Jersey: Prentice Hall, 1992.
    Gagliano R A, Ghosh G, Fine M E. Nucleation kinetics of Cu6Sn5 by reaction of molten tin with a copper substrate[J]. Journal of Electronic Materials, 2002, 31(11): 1195 − 1202. doi: 10.1007/s11664-002-0010-1
  • Related Articles

    [1]WANG Qun, YU Yang, QIAN Zhiqiang. Optimization of process parameters for electron beam butt welding of HR-2 hydrogen resistant steel based on response surface method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 50-57. DOI: 10.12073/j.hjxb.20220522001
    [2]GAO Yanfeng, WU Dong, HUANG Linran. Metal transfer characteristics in the GMAW horizontal welding process under local dry environment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 82-86. DOI: 10.12073/j.hjxb.2019400240
    [3]XU Wanghui, LIN Sanbao, YANG Chunli, FAN Chenglei. Weld bead formation in oscillating arc narrow gap vertical-up GMAW process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(4): 56-60.
    [4]LU Zhenyang, TANG Chao, XIONG Wei, HUANG Pengfei. Parameter optimization for MAG of DP780[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (12): 9-12.
    [5]TIAN Yanhong, YANG Dongsheng, WANG Chunqing. Optimization on parameters of electronic flame off process of ball bonds with fine diameter copper wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (1): 41-44.
    [6]WANG Hongxiao, SHI Chunyuan, WANG Chunsheng, WANG Ting. Optimization of laser welding parameters of stainless steel vehicle body based on response surface methodology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (10): 69-72.
    [7]ZHANG Jianjun, LI Wushen, DI Xinjie, WU Qiang. Prediction of performance of heat affected zone and optimization on welding parameters of 07MnNiCrMoVDR steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (3): 29-32.
    [8]SUN Guang, HE Jian-ping, ZHANG Chun-bo, BAI Ri-hui, WU Yi-xiong. Parameters regulated multi slope waveform control gas metal arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (3): 63-66.
    [9]ZHANC Ben-sheng, ZHOU Hong, YU Yong-li. Optimizing Parameters or A New Sprying Material[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (4): 58-60.
    [10]SUN Jun-sheng, WU Chuan-song, Li Ya-jiang. Welding Heat Transfer of GMAW and Its Effects on Austenite Grain Growth Process in HAZ[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (3): 27-31.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (518) PDF downloads (30) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return