Advanced Search
CHAI Peng, WANG Yue, GUO Xiaojuan, QI Bojin. Effect of connection process on mechanical properties of aluminum alloy structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(6): 78-84. DOI: 10.12073/j.hjxb.20190626002
Citation: CHAI Peng, WANG Yue, GUO Xiaojuan, QI Bojin. Effect of connection process on mechanical properties of aluminum alloy structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(6): 78-84. DOI: 10.12073/j.hjxb.20190626002

Effect of connection process on mechanical properties of aluminum alloy structure

More Information
  • Received Date: June 25, 2019
  • Available Online: September 26, 2020
  • 7B04 aluminum alloy was chosen as the experimental material. The static and fatigue properties of 7B04 aluminum alloy structure joined by refill friction stir spot welding (Refill FSSW) were conducted, and they were compared with that joined by riveting. Results show that the compression static load of the typical structure connected by riveting and refill FSSW fluctuated in the range of 117 —124 kN, and the shear load was in the range of 89 —95 kN. Welds spacing had a small influence on the static load of the structures joined by refill FSSW. However, the fatigue life of structures of riveting was lower than that joined by refill FSSW. For the welded structure, the heterogeneous microstructures of welding joint led to the uneven microhardness, and meanwhile the hook in the lap interface bends upwards. These factors made the fatigue structures failure along the path that sleeve moves.
  • 刘晓涛, 崔建忠. Al-Zn-Mg-Cu系超高强铝合金的研究进展[J]. 材料导报, 2005, 19(3): 47. doi: 10.3321/j.issn:1005-023X.2005.03.014

    Liu Xiaotao, Cui Jianzhong. Progress in research on ultra high strength Al-Zn-Mg-Cu alloy[J]. Materials Review, 2005, 19(3): 47. doi: 10.3321/j.issn:1005-023X.2005.03.014
    Wang Y, Chai P, Ma H, et al. Formation mechanism and fracture behavior in extra-filling refill friction stir spot weld for Al–Cu–Mg aluminum alloy[J]. Journal of Materials Science, 2020, 55(1): 358 − 374.
    姬书得, 王月, 马琳, 等. 回填时间对RFSSW接头断裂行为的影响[J]. 焊接学报, 2017, 38(5): 40 − 43. doi: 10.12073/j.hjxb.20170509

    Ji Shude, Wang Yue, Ma Lin, et al. Effect of refill time on fracture feature of refill friction stir spot welding[J]. Transactions of the China Welding Institution, 2017, 38(5): 40 − 43. doi: 10.12073/j.hjxb.20170509
    Zhao Y Q, Liu H J, Chen S X, et al. Effects of sleeve plunge depth on microstructures and mechanical properties of friction spot welded alclad 7b04-t74 aluminum alloy[J]. Materials and Design, 2014, 62: 40 − 46. doi: 10.1016/j.matdes.2014.05.012
    Zhao Y Q, Liu H J, Lin Z, et al. Microstructures and mechanical properties of friction spot welded alclad 7b04-t74 aluminium alloy[J]. Science and Technology of Welding and Joining, 2014, 19(7): 617 − 622. doi: 10.1179/1362171814Y.0000000235
    朱小刚, 王联凤, 乔凤斌, 等. 6061-t6铝合金回填式搅拌摩擦点焊疲劳性能分析[J]. 焊接学报, 2014, 35(4): 91 − 94.

    Zhu Xiaogang, Wang Lianfeng, Qiao Fengbin, et al. Fatigue failure analysis of 6061-T6 aluminum alloy refilled friction stir spot welding[J]. Transactions of the China Welding Institution, 2014, 35(4): 91 − 94.
    王希靖, 许有伟, 王小龙, 等. 6082-t6铝合金回填式搅拌摩擦 点焊接头的疲劳性能的有限元分析[J]. 材料导报, 2016, 30(2): 141 − 144.

    Wang Xijing, Xu Youwei, Wang Xiaolong, et al. Finite element analyses on fatigue properties of refill friction stir spot welded joint of 6082-T6 aluminum alloy[J]. Materials Review, 2016, 30(2): 141 − 144.
    Lacki P, Derlatka A. Strength evaluation of beam made of the aluminum 6061-T6 and titanium grade 5 alloys sheets joined by RFSSW and RSW[J]. Composite Structures, 2017, 159: 491 − 497. doi: 10.1016/j.compstruct.2016.10.003
    Venukumar S, Yalagi S, Muthukumaran S, et al. Static shear strength and fatigue life of refill friction stir spot welded aa 6061-t6 sheets[J]. Science & Technology of Welding & Joining, 2014, 19(3): 214 − 223.
    于健. 考虑连接性能的搅拌摩擦点焊加筋壁板力学性能分析 [D]. 南京: 南京航空航天大学, 2015.

    Yu Jian. On mechanical properties of friction stir welded stiffened panel considering the effect of connection[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015.
    Shen Z, Yang X, Zhang Z, et al. Microstructure and failure mechanisms of refill friction stir spot welded 7075-T6 aluminum alloy joints[J]. Materials & Design, 2013, 44: 476 − 486.
    Zhou L, Luo L Y, Zhang T P, et al. Effect of rotation speed on microstructure and mechanical properties of refill friction stir spot welded 6061-T6 aluminum alloy[J]. International Journal of Advanced Manufacturing Technology, 2017(5–8): 1 − 9.
    Shi Y, Yue Y, Zhang L, et al. Refill friction stir spot welding of 2198-T8 aluminum alloy[J]. Transactions of the Indian Institute of Metals, 2018, 71: 139 − 145.
    Li Z W, Gao S S, Ji S D, et al. Effect of rotational speed on microstructure and mechanical properties of refill friction stir spot welded 2024 Al alloy[J]. Journal of Materials Engineering and Performance, 2016, 25(4): 1673 − 1682. doi: 10.1007/s11665-016-1999-2
  • Related Articles

    [1]CAO Runping, HAN Yongquan, LIU Xiaohu, HONG Haitao, HAN Jiao. Effect of rare earth Ce on arc and droplet transfer behavior[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(1): 95-102. DOI: 10.12073/j.hjxb.20231109001
    [2]HU Qingsong, YAN Zhaoyang, ZHANG Pengtian, CHEN Shujun. Arc behavior and droplet transfer in self-adaptive shunt alternating arc WAAM[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(2): 41-46. DOI: 10.12073/j.hjxb.20230309003
    [3]YANG Yicheng, DU Bing, HUANG Jihua, HUANG Ruisheng, CHEN Jian, XU Fujia. Mechanism of wire and arc interaction in hollow tungsten arc welding with coaxial filler wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(4): 94-99. DOI: 10.12073/j.hjxb.20210913001
    [4]ZHOU Xiaochen1, LI Huan1, SONG Chunguang2, ZHANG Yuchang3. Study on characteristics of droplet transfer for pulsed TOPTIG[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 45-48. DOI: 10.12073/j.hjxb.20150609001
    [5]ZHU Xiaoyang, LI Huan, HUANG Chaoqun, YANG Ke, NI Yanbing, WANG Guodong. Analysis of droplet transfer and weld appearance in pulsed wire feeding MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(10): 59-63.
    [6]XIE Shengmian, WU Kaiyuan, WEN Yuanmei, GE Weiqing, HUANG Shisheng. Effects of pulse frequency on TCGMAW droplet transfer modes[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (3): 69-72.
    [7]LI Fang, HUA Xueming, WANG Weibin, WU Yixiong. Modeling of droplet transfer electrical characteristics in pulsed gas melted arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (7): 97-100.
    [8]LIU Gang, FENG Yun, LI Jun-yue, FAN Rong-huan. Arc spectrum signals of droplet spray transfer in MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (1): 40-44.
    [9]YANG Yun-qiang, ZHANG Xiao-qi, LI Jun-yue, LI Huan. Selection of droplet transfer specific spectrum window[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (1): 14-18.
    [10]YANG Yun-qiang, LI Jun-yue, HU Sheng-gang, LIU Gang, LI Huan. The Characteristic Spectral Information of Droplet Transfer in Pulsed MIG Welding and It's Applications[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (4): 36-38.

Catalog

    Article views (384) PDF downloads (15) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return