Advanced Search
LIU Wei, ZHANG Weibo. Influence of process parameters on metal droplet deposition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(12): 82-88. DOI: 10.12073/j.hjxb.2018390303
Citation: LIU Wei, ZHANG Weibo. Influence of process parameters on metal droplet deposition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(12): 82-88. DOI: 10.12073/j.hjxb.2018390303

Influence of process parameters on metal droplet deposition

More Information
  • Received Date: July 21, 2017
  • Using numerical calculation and experimental analysis methods, the deposition and spreading change of single metal droplet at different process parameters (deposition distance, scanning speed, melt temperature, substrate temperature, nozzle diameter, etc.). The validity of the current model was verified. Then, numerical models of single channel/multi-channel lap formations were established. Melt flow, spreading and coagulation mechanisms of the molten metal drop in the sedimentary formation were explored under small space and large temperature gradient. The results showed that when using the lap formation on a typical cross section, the influence law between primary characteristic factors, morphology and internal quality could be obtained by optimizing process parameters. This provides technical support and reference for the molten droplet depositing formation of the subsequent complex metal parts.
  • Cheng S, Chandra S. A penumatic droplet-on-demand generator[J]. Experiments in Fluids, 2003, 34: 755 ? 762
    Stewart X C, Tiegang L, Chandra S. Producing molten metal droplets with a pneumatic droplet-on-demand generator[J]. Journal of Materials Processing Technology, 2005, 159: 295 ? 302.
    Fang M, Chandra S, Park C B. Experiments on remelting and solidification of molten metal droplets deposited in vertical columns[J]. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2007, 129(2): 311 ? 318.
    Will Jeffrey, D Kistner, G Matthew. Fabrication of laser beam welded superplastically formed multi-sheet structure using advanced titanium alloys[J]. International SAMPE Technical Conference, 1996, 28(4–7): 651 ? 663.
    肖 珺. 基于脉冲激光与电弧力调控的 GMAW 熔滴过渡主动 控制[D]. 哈尔滨: 哈尔滨工业大学, 2014.
    朱志明, 吴文楷, 陈 强, 等. 短路过渡 CO2 焊接熔滴尺寸控制[J]. 焊接学报, 2007, 28(4): 1 ? 4
    Zhu Zhiming, Wu Wenkai, Chen Qiang, et al. Molten droplet size control in short-circuiting CO2 arc welding[J]. Transactions of the China Welding Institution, 2007, 28(4): 1 ? 4
    卢振洋, 李 艳, 黄鹏飞, 等. 短路过渡气体保护焊参数优化[J]. 焊接学报, 2009, 30(3): 17 ? 20
    Lu Zhenyang, Li Yan, Huang Pengfei, et al. Optimum parameters of short circuit droplet transfer gas metal arc welding[J]. Transactions of the China Welding Institution, 2009, 30(3): 17 ? 20
    吕小青, 曹 彪, 曾 敏, 等. 短路过渡电弧的关联维数分析[J]. 焊接学报, 2005, 26(6): 65 ? 68
    Lü Xiaoqing, Cao Biao, Zeng Min, et al. Correlation dimension analysis of short circuit transferred arc[J]. Transactions of the China Welding Institution, 2005, 26(6): 65 ? 68
    程东海, 陈益平, 胡德安, 等. TC4 钛合金激光焊对接接头超塑变形显微组织[J]. 焊接学报, 2011, 32(9): 81 ? 84, 117
    Cheng Donghai, Chen Yiping, Hu Dean, et al. Microstructure of TC4 titanium alloy laser welded butt joint under superplastic deformation[J]. Transactions of the China Welding Institution, 2011, 32(9): 81 ? 84, 117
    程东海, 黄继华, 杨 静, 等. TC4 钛合金激光焊接接头超塑性变形力学行为研究[J]. 稀有金属材料与工程, 2010, 39(2): 277 ? 280
    Cheng Donghai, Huang Jihua, Yang Jing, et al. Superplastic deformation mechanical behavior of laser welded joints of TC4 titanium alloys[J]. Rare Metal Materials and Engineering, 2010, 39(2): 277 ? 280
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (502) PDF downloads (1) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return