Advanced Search
BI Zongyue, YANG Jun, NIU Hui, HUANG Xiaojiang. Impact toughness of base metal and welded joints of X90 high-strength pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(10): 35-40. DOI: 10.12073/j.hjxb.2018390245
Citation: BI Zongyue, YANG Jun, NIU Hui, HUANG Xiaojiang. Impact toughness of base metal and welded joints of X90 high-strength pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(10): 35-40. DOI: 10.12073/j.hjxb.2018390245

Impact toughness of base metal and welded joints of X90 high-strength pipeline steel

More Information
  • Received Date: May 14, 2017
  • X90 pipeline steel pipe is a new type of high strength pipeline steel pipe being researched and developed. With the increase of pipe strength, the structure and properties of submerged arc welding seam become the key of research and control. The impact toughness in low temperature, fracture morphology, microstructure characteristics, grain orientation and percentage of large/small angle grain boundaries of weld seam, heat affected zone (HAZ) and base metal in X90 steel grade spiral submerged arc welded pipe manufacture were investigated by OM, SEM, TEM, EBSD and Charpy impact experiments. The results indicate that the microstructure near fracture zone of weld seam specimen was composed of acicular ferrite(AF) and quasi-polygonal ferrite (QPF). The form of M-A constituents shows diversity, sharp-angled clearly and the size increased as length×width =1.8 μm×0.5 μm. The values of average grain size was 3.12 μm and the proportion of large-angle grain boundaries was 67.15%. The microstructure near fracture zone of HAZ specimen was composed of granular bainite (GB) and multi-morphological M-A constituents, the M-A constituents in the grain boundary and crystal. The values of average grain size was 4.52 μm and the proportion of large-angle grain boundaries was 85.95%. The microstructure near fracture zone of base metal specimen was composed of fine AF, fine QPF, lath bainite (LB) and a small fine granular M-A (martenite/austenite) structure. The values of average grain size was 2.1 μm and the proportion of large-angle grain boundaries was 93.75%. Concentrated distribution of large size M-A constituents and the relatively small proportion of large-angle grain boundaries were the main reason for the poor impact toughness of weld.
  • Rosado D B, Waele W D, Vanderschueren D, et al. Latest developments in mechanical properties and metallurgical features of high strength line pipe steels[C]//International Conference on Sustainable Construction & Design, Ghent, 2013.
    Ishikawa N, Okatsu M, Endo S, et al. Mass production and installation of X100 linepipe for strain-based design application[C]//International Pipeline Conference, 2008: 705-711.
    Naoshi Ayukawa, Yoshio Terada, Takuya Hara, 等. 高强度管线钢及其焊管的性能研究[J]. 焊管, 2005, 28(2): 50 ? 60
    Naoshi Ayukawa, Yoshio Terada, Takuya Hara, et al. Properties research of high strength pipeline steel and its welded pipe[J]. Welded Pipe and Tube, 2005, 28(2): 50 ? 60
    Demofonti G, Mannucci G, Hillebrand H G, et al. Evaluation of the suitability of X100 steel pipes for high pressure gas transportation pipelines by full scale tests[C]. //Proceedings of IPC 2004 International Pipeline Conference, Calgary, Alberta, Canada, 2004:1-8.
    Yoo J Y, Ahn S S, Seo D H, et al. New development of high grade X80 to X120 pipeline steels[J]. Materials and Manufacturing Processes, 2011, 26(1): 154 ? 160.
    郑 伟, 张 宏, 刘啸奔, 等. 基于应变设计方法在新粤浙断层区管道上的应用[J]. 焊管, 2015, 38(4): 38 ? 42
    Zheng Wei, Zhang Hong, Liu Xiaoben, et al. Application of the strain-based design method in area of fault of Xin Yue Zhe pipeline[J]. Welded Pipe and Tube, 2015, 38(4): 38 ? 42
    李鹤林, 李 霄, 吉玲康, 等. 油气管道基于应变的设计及抗大变形管线钢的开发与应用[J]. 焊管, 2007, 30(5): 5 ? 11
    Li Helin, Li Xiao, Ji Lingkang, et al. Strain based design for pipeline and development of pipe steel with high deformation resistance[J]. Welded Pipe and Tube, 2007, 30(5): 5 ? 11
    马家鑫, 皇甫严凯, 杨专钊, 等. 油气输送钢管硫化物应力腐蚀开裂试验评定标准探讨[J]. 焊管, 2013, 36(3): 61 ? 64
    Ma Jiaxin, Huangfu Yankai, Yang Zhuanzhao, et al. Discussion on evaluation standards for sulfide stress corrosion cracking in oil & gas transmitting pipeline[J]. Welded Pipe and Tube, 2013, 36(3): 61 ? 64
    申 坤, 王 斌. TRIP效应在基于应变设计的大变形管线钢中的应用[J]. 焊管, 2013, 36(3): 11 ? 14
    Shen Kun, Wang Bin. Application of TRIP effect in large deformation pipeline steel based on strain design[J]. Welded Pipe and Tube, 2013, 36(3): 11 ? 14
    Wang X, Li X, Wu S, et al. Effect of austenitic state on the multi-phase control in X90 pipeline steel with high Nb content[J]. Materials Today: Proceedings, 2015, 2(7): S701 ? S706.
    Zhang J M, Huo C Y, Ma Q R, et al. NbC-TiN co-precipitation behavior and mechanical properties of X90 pipeline steels by critical-temperature rolling process[J]. International Journal of Pressure Vessels and Piping, 2018, 165: 29 ? 33.
    卓小敏, 徐 杰, 李朋朋, 等. 残余应力对管线钢韧性断裂的影响[J]. 焊接学报, 2017, 38(5): 44 ? 48
    Zhuo Xiaomin, Xu Jie, Li Pengpeng, et al. Effect of residual stresses on ductile fracture of pipeline steels[J]. Transactions of the China Welding Institution, 2017, 38(5): 44 ? 48
    Zhou P S, Wang B, Wang L, et al. Effect of welding heat input on grain boundary evolution and toughness properties in CGHAZ of X90 pipeline steel[J]. Materials Science & Engineering A, 2018, 722(3): 112 ? 121.
    毕宗岳, 牛 辉, 温宝京, 等. 超高强度X100管线钢埋弧焊焊丝研制[J]. 焊管, 2014, 37(5): 16 ? 19
    Bi Zongyue, Niu Hui, Wen Baojing, et al. Development of SAW welding wire for ultra-high strength X100 pipeline steel[J]. Welded Pipe and Tube, 2014, 37(5): 16 ? 19
    赵红波, 牛 辉, 付宏强, 等. X100超高强度管线钢用埋弧焊烧结焊剂研制[J]. 焊管, 2014, 37(3): 19 ? 22
    Zhao Hongbo, Niu Hui, Fu Hongqing, et al. Development of submerged-arc welding sintered flux used for X100 ultra high strength pipeline steel[J]. Welded Pipe and Tube, 2014, 37(3): 19 ? 22
    何小东, 霍春勇, 路彩虹, 等. X90高强度管线钢预精焊冷裂纹形貌及成因[J]. 焊接学报, 2017, 38(7): 86 ? 90
    He Xiaodong, Huo Chunyong, Lu Caihong, et al. Morphology and causes of cold crack in tack and finish weld of X90 high strength pipeline steel[J]. Transactions of the China Welding Institution, 2017, 38(7): 86 ? 90
    Yang F P, Huo C Y, Luo J H, et al. Crack propagation and arrest simulation of X90 gas pipe[J]. International Journal of Pressure Vessels and Piping, 2017, 149: 120 ? 131.
    毕宗岳, 杨 军, 牛 靖, 等. X100高强管线钢焊接接头的断裂韧性[J]. 金属学报, 2013, 49(5): 576 ? 582
    Bi Zongyue, Yang Jun, Niu Jing, et al. Fracture toughness of welded joints of X100 high-strength pipeline steel[J]. Acta Metallurgica Sinica, 2013, 49(5): 576 ? 582
    毕宗岳. 管线钢管焊接技术[M]. 北京: 石油工业出版社, 2013.
    Edmonds D V, Cochrane R C. Structure-property relationships in bainite steels[J]. Metallurgical & Materials Transactions A, 1990, 21: 1527 ? 1540.
    邓 伟,高秀华, 秦小梅, 等. X80管线钢的冲击断裂行为[J]. 金属学报, 2010, 46(5): 533 ? 540
    Deng Wei, Gao Xiuhua, Qin Xiaomei, et al. Impact fracture behavior of X80 pipeline steel[J]. Acta Metallurgica Sinica, 2010, 46(5): 533 ? 540
    夏佃秀, 王学林, 李秀程, 等. X90级别第三代管线钢的力学性能与组织特征[J]. 金属学报, 2013, 49(3): 271 ? 276
    Xia Dianxiu, Wang Xuelin, Li Xiucheng, et al. Properties and microstructure of third generation X90 pipeline steel[J]. Acta Metallurgica Sinica, 2013, 49(3): 271 ? 276
    聂文金, 尚成嘉, 由 洋,等. 抗变形X100管线钢模拟焊接热影响区的组织与韧性研究[J]. 金属学报, 2012, 48(7): 797 ? 806
    Nie Wenjin, Shang Chengjia, You Yang, et al. Microstructure and toughness of the simulated welding heat affected zone in X100 pipeline steel with high deformation resistance[J]. Acta Metallurgica Sinica, 2012, 48(7): 797 ? 806
    Nie W J, Wang X M, Wu S J, et al. Stress-strain behavior of multi-phase high performance structural steel[J]. Science China Technological Sciences, 2012, 55(7): 1791 ? 1796.
    Li Y, Baker T N. Effect of morphology of martensite-austenite phase on fracture of weld heat affected zone in vanadium and niobium microalloyed steels[J]. Metal Science and Technology, 2010, 26: 1029 ? 1040.
    Hwang B, Yang G K, Lee S, et al. Effective grain size and Charpy impact properties of high-toughness X70 pipeline steels[J]. Metallurgical & Materials Transactions A, 2005, 36(8): 2107 ? 2114.
    齐俊杰, 黄运华, 张 跃. 微合金化钢[M]. 北京: 冶金工业出版社, 2006.
    Hwang B, Chang G L, Lee T H. Correlation of microstructure and mechanical properties of thermomechanically processed low-carbon steels containing boron and copper[J]. Metallurgical & Materials Transactions A, 2010, 41(1): 85 ? 96.
    Byun J S, Shim J H, Cho Y W, et al. Non-metallic inclusion and intragranular nucleation of ferrite in Ti-killed C-Mn steel[J]. Acta Materialia, 2003, 51(6): 1593 ? 1606.
  • Related Articles

    [1]LI Hao, LIU Yihua. Residual stress field in hole-drilling method-part II:application[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (10): 33-36.
    [2]FANG Hongyuan, ZHANG Xueqiu, YANG Jianguo, LIU Xuesong. Calculation and discussion of welding plastic strain[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (7): 60-63.
    [3]FANG Hongyuan, ZHANG Xueqiu, YANG Jiangguo, LIU Xuesong. Calculation and discussion of welding stress and strain field[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (3): 129-132.
    [4]MENG Xianlu, CHEN Huaining, LIN Quanhong, CHEN Jing. Stress-strain around an indentation in measuring residual stress by indentation-strain method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (3): 109-112.
    [5]YOU Min, ZHENG Xioa ling, YU Hai zhou. Discussion and investigation on mechanism of welding residual stresses in mild steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (2): 51-54,58.
    [6]WANG Jian hua, LU Hao, WEI Liang wu. Prediction of Welding Distortions Based on Theory of Inherent Strain by FEM and Its Application[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (6): 36-40.
    [7]WANG Jian-hua, LU Hao. Some Discussions on Principle of Causing and Relieving Welding Residual Stress[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (3): 75-79.
    [8]WANG Zhe-chang. Discuss on Principle of Relieving Welding Residual Stress[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (2): 55-58.
    [9]Chen Huaining, Chen Liangshan, Dong Xiuzhong. Drilling strains in measuring residual stress with hole-drilling strain-gage method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1994, (4): 276-280.
    [10]Wang Jianhua, Chen Chu. Characteristics of welding residual stresscs and strains of thick plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1991, (2): 109-115.

Catalog

    Article views (284) PDF downloads (1) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return