Advanced Search
BI Zongyue, YANG Jun, NIU Hui, HUANG Xiaojiang. Impact toughness of base metal and welded joints of X90 high-strength pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(10): 35-40. DOI: 10.12073/j.hjxb.2018390245
Citation: BI Zongyue, YANG Jun, NIU Hui, HUANG Xiaojiang. Impact toughness of base metal and welded joints of X90 high-strength pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(10): 35-40. DOI: 10.12073/j.hjxb.2018390245

Impact toughness of base metal and welded joints of X90 high-strength pipeline steel

More Information
  • Received Date: May 14, 2017
  • X90 pipeline steel pipe is a new type of high strength pipeline steel pipe being researched and developed. With the increase of pipe strength, the structure and properties of submerged arc welding seam become the key of research and control. The impact toughness in low temperature, fracture morphology, microstructure characteristics, grain orientation and percentage of large/small angle grain boundaries of weld seam, heat affected zone (HAZ) and base metal in X90 steel grade spiral submerged arc welded pipe manufacture were investigated by OM, SEM, TEM, EBSD and Charpy impact experiments. The results indicate that the microstructure near fracture zone of weld seam specimen was composed of acicular ferrite(AF) and quasi-polygonal ferrite (QPF). The form of M-A constituents shows diversity, sharp-angled clearly and the size increased as length×width =1.8 μm×0.5 μm. The values of average grain size was 3.12 μm and the proportion of large-angle grain boundaries was 67.15%. The microstructure near fracture zone of HAZ specimen was composed of granular bainite (GB) and multi-morphological M-A constituents, the M-A constituents in the grain boundary and crystal. The values of average grain size was 4.52 μm and the proportion of large-angle grain boundaries was 85.95%. The microstructure near fracture zone of base metal specimen was composed of fine AF, fine QPF, lath bainite (LB) and a small fine granular M-A (martenite/austenite) structure. The values of average grain size was 2.1 μm and the proportion of large-angle grain boundaries was 93.75%. Concentrated distribution of large size M-A constituents and the relatively small proportion of large-angle grain boundaries were the main reason for the poor impact toughness of weld.
  • Rosado D B, Waele W D, Vanderschueren D, et al. Latest developments in mechanical properties and metallurgical features of high strength line pipe steels[C]//International Conference on Sustainable Construction & Design, Ghent, 2013.
    Ishikawa N, Okatsu M, Endo S, et al. Mass production and installation of X100 linepipe for strain-based design application[C]//International Pipeline Conference, 2008: 705-711.
    Naoshi Ayukawa, Yoshio Terada, Takuya Hara, 等. 高强度管线钢及其焊管的性能研究[J]. 焊管, 2005, 28(2): 50 ? 60
    Naoshi Ayukawa, Yoshio Terada, Takuya Hara, et al. Properties research of high strength pipeline steel and its welded pipe[J]. Welded Pipe and Tube, 2005, 28(2): 50 ? 60
    Demofonti G, Mannucci G, Hillebrand H G, et al. Evaluation of the suitability of X100 steel pipes for high pressure gas transportation pipelines by full scale tests[C]. //Proceedings of IPC 2004 International Pipeline Conference, Calgary, Alberta, Canada, 2004:1-8.
    Yoo J Y, Ahn S S, Seo D H, et al. New development of high grade X80 to X120 pipeline steels[J]. Materials and Manufacturing Processes, 2011, 26(1): 154 ? 160.
    郑 伟, 张 宏, 刘啸奔, 等. 基于应变设计方法在新粤浙断层区管道上的应用[J]. 焊管, 2015, 38(4): 38 ? 42
    Zheng Wei, Zhang Hong, Liu Xiaoben, et al. Application of the strain-based design method in area of fault of Xin Yue Zhe pipeline[J]. Welded Pipe and Tube, 2015, 38(4): 38 ? 42
    李鹤林, 李 霄, 吉玲康, 等. 油气管道基于应变的设计及抗大变形管线钢的开发与应用[J]. 焊管, 2007, 30(5): 5 ? 11
    Li Helin, Li Xiao, Ji Lingkang, et al. Strain based design for pipeline and development of pipe steel with high deformation resistance[J]. Welded Pipe and Tube, 2007, 30(5): 5 ? 11
    马家鑫, 皇甫严凯, 杨专钊, 等. 油气输送钢管硫化物应力腐蚀开裂试验评定标准探讨[J]. 焊管, 2013, 36(3): 61 ? 64
    Ma Jiaxin, Huangfu Yankai, Yang Zhuanzhao, et al. Discussion on evaluation standards for sulfide stress corrosion cracking in oil & gas transmitting pipeline[J]. Welded Pipe and Tube, 2013, 36(3): 61 ? 64
    申 坤, 王 斌. TRIP效应在基于应变设计的大变形管线钢中的应用[J]. 焊管, 2013, 36(3): 11 ? 14
    Shen Kun, Wang Bin. Application of TRIP effect in large deformation pipeline steel based on strain design[J]. Welded Pipe and Tube, 2013, 36(3): 11 ? 14
    Wang X, Li X, Wu S, et al. Effect of austenitic state on the multi-phase control in X90 pipeline steel with high Nb content[J]. Materials Today: Proceedings, 2015, 2(7): S701 ? S706.
    Zhang J M, Huo C Y, Ma Q R, et al. NbC-TiN co-precipitation behavior and mechanical properties of X90 pipeline steels by critical-temperature rolling process[J]. International Journal of Pressure Vessels and Piping, 2018, 165: 29 ? 33.
    卓小敏, 徐 杰, 李朋朋, 等. 残余应力对管线钢韧性断裂的影响[J]. 焊接学报, 2017, 38(5): 44 ? 48
    Zhuo Xiaomin, Xu Jie, Li Pengpeng, et al. Effect of residual stresses on ductile fracture of pipeline steels[J]. Transactions of the China Welding Institution, 2017, 38(5): 44 ? 48
    Zhou P S, Wang B, Wang L, et al. Effect of welding heat input on grain boundary evolution and toughness properties in CGHAZ of X90 pipeline steel[J]. Materials Science & Engineering A, 2018, 722(3): 112 ? 121.
    毕宗岳, 牛 辉, 温宝京, 等. 超高强度X100管线钢埋弧焊焊丝研制[J]. 焊管, 2014, 37(5): 16 ? 19
    Bi Zongyue, Niu Hui, Wen Baojing, et al. Development of SAW welding wire for ultra-high strength X100 pipeline steel[J]. Welded Pipe and Tube, 2014, 37(5): 16 ? 19
    赵红波, 牛 辉, 付宏强, 等. X100超高强度管线钢用埋弧焊烧结焊剂研制[J]. 焊管, 2014, 37(3): 19 ? 22
    Zhao Hongbo, Niu Hui, Fu Hongqing, et al. Development of submerged-arc welding sintered flux used for X100 ultra high strength pipeline steel[J]. Welded Pipe and Tube, 2014, 37(3): 19 ? 22
    何小东, 霍春勇, 路彩虹, 等. X90高强度管线钢预精焊冷裂纹形貌及成因[J]. 焊接学报, 2017, 38(7): 86 ? 90
    He Xiaodong, Huo Chunyong, Lu Caihong, et al. Morphology and causes of cold crack in tack and finish weld of X90 high strength pipeline steel[J]. Transactions of the China Welding Institution, 2017, 38(7): 86 ? 90
    Yang F P, Huo C Y, Luo J H, et al. Crack propagation and arrest simulation of X90 gas pipe[J]. International Journal of Pressure Vessels and Piping, 2017, 149: 120 ? 131.
    毕宗岳, 杨 军, 牛 靖, 等. X100高强管线钢焊接接头的断裂韧性[J]. 金属学报, 2013, 49(5): 576 ? 582
    Bi Zongyue, Yang Jun, Niu Jing, et al. Fracture toughness of welded joints of X100 high-strength pipeline steel[J]. Acta Metallurgica Sinica, 2013, 49(5): 576 ? 582
    毕宗岳. 管线钢管焊接技术[M]. 北京: 石油工业出版社, 2013.
    Edmonds D V, Cochrane R C. Structure-property relationships in bainite steels[J]. Metallurgical & Materials Transactions A, 1990, 21: 1527 ? 1540.
    邓 伟,高秀华, 秦小梅, 等. X80管线钢的冲击断裂行为[J]. 金属学报, 2010, 46(5): 533 ? 540
    Deng Wei, Gao Xiuhua, Qin Xiaomei, et al. Impact fracture behavior of X80 pipeline steel[J]. Acta Metallurgica Sinica, 2010, 46(5): 533 ? 540
    夏佃秀, 王学林, 李秀程, 等. X90级别第三代管线钢的力学性能与组织特征[J]. 金属学报, 2013, 49(3): 271 ? 276
    Xia Dianxiu, Wang Xuelin, Li Xiucheng, et al. Properties and microstructure of third generation X90 pipeline steel[J]. Acta Metallurgica Sinica, 2013, 49(3): 271 ? 276
    聂文金, 尚成嘉, 由 洋,等. 抗变形X100管线钢模拟焊接热影响区的组织与韧性研究[J]. 金属学报, 2012, 48(7): 797 ? 806
    Nie Wenjin, Shang Chengjia, You Yang, et al. Microstructure and toughness of the simulated welding heat affected zone in X100 pipeline steel with high deformation resistance[J]. Acta Metallurgica Sinica, 2012, 48(7): 797 ? 806
    Nie W J, Wang X M, Wu S J, et al. Stress-strain behavior of multi-phase high performance structural steel[J]. Science China Technological Sciences, 2012, 55(7): 1791 ? 1796.
    Li Y, Baker T N. Effect of morphology of martensite-austenite phase on fracture of weld heat affected zone in vanadium and niobium microalloyed steels[J]. Metal Science and Technology, 2010, 26: 1029 ? 1040.
    Hwang B, Yang G K, Lee S, et al. Effective grain size and Charpy impact properties of high-toughness X70 pipeline steels[J]. Metallurgical & Materials Transactions A, 2005, 36(8): 2107 ? 2114.
    齐俊杰, 黄运华, 张 跃. 微合金化钢[M]. 北京: 冶金工业出版社, 2006.
    Hwang B, Chang G L, Lee T H. Correlation of microstructure and mechanical properties of thermomechanically processed low-carbon steels containing boron and copper[J]. Metallurgical & Materials Transactions A, 2010, 41(1): 85 ? 96.
    Byun J S, Shim J H, Cho Y W, et al. Non-metallic inclusion and intragranular nucleation of ferrite in Ti-killed C-Mn steel[J]. Acta Materialia, 2003, 51(6): 1593 ? 1606.
  • Related Articles

    [1]REN Wei, SHUAI Jian. The effect of welding method on the fracture toughness of X90 pipeline girth weld joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 32-42. DOI: 10.12073/j.hjxb.20230406001
    [2]HE Xiaodong, HUO Chunyong, LU Caihong, TONG Ke, SONG Juan. Morphology and causes of cold crack in tack and finish weld of X90 high strength pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 86-90. DOI: 10.12073/j.hjxb.20150724001
    [3]XU Jie, LI Pengpeng, FAN Yu, SUN Zhi. Effect of temperature on fracture toughness in weld thermal simulated X80 pipeline steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(1): 22-26.
    [4]ZHANG Nan, CHEN Yanqing, XU Xiaoning, LIU Xingquan. Effect of Cu-Ni components in X80 pipeline and heat input on discretization of toughness in CGHAZ[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 119-124.
    [5]LIU Zhengjun, QIN Hua, SU Yunhai, LIU Changjun, LU Yanpeng. Microstructure and low temperature impact toughness of vibration assisted welded BWELDY960Q steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(8): 93-96.
    [6]ZHOU Xianliang, LI Huirong, HUA Xiaozhen, YE Zhiguo. Microstructures and corrosion properties of submerged arc welded joint for X80 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (1): 37-40,80.
    [7]LI Jianjun, DU Zeyu, LIU Guangyun, Lü Xiangyang. Welded joint properties of X60 pipeline steel at -20℃[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (12): 93-96.
    [8]LI Ran, WEI Jinshan, PENG Yun, TIAN Zhiling, SHI Zhe. Development of gas metal arc welding wire for X80 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (7): 97-100.
    [9]ZHANG Min, YAO Cheng-wu, FU Chong, LV Zhen-lin. Submerged arc welding wire matched with X80 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (4): 64-68.
    [10]DENG Cai yan, ZHANG Yu feng, HUO Li xing, BAI Bing ren, LI Xiao wei, CAO Jun. CTOD fracture toughness of welded joints of X65 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (3): 13-16.
  • Cited by

    Periodical cited type(6)

    1. 马晓阳,何亮,成应晋,王杏华,程彬,贺智涛. BP神经网络预测船用钢焊接接头力学性能研究. 金属制品. 2024(03): 59-63 .
    2. 黄伟波,赵晓宇. 选区激光熔化成形参数对熔池尺寸的影响. 肇庆学院学报. 2023(05): 65-73+79 .
    3. 马佳博,王成玥,陈峰. 加激光选区熔化成形技术的产品设计三维模型研究. 激光杂志. 2020(05): 134-138 .
    4. 吕小青,王旭,徐连勇,荆洪阳,韩永典. 基于组合模型的MAG焊工艺参数多目标优化. 焊接学报. 2020(02): 6-11+97 . 本站查看
    5. 邢晓芳,贲强,周勇,路浩,韩佩. 基于回归分析的螺母凸焊工艺优化. 焊接学报. 2020(12): 91-96+102 . 本站查看
    6. 常峰博,高亮,陈宇翔,佟志光,李铭钰,滕征泰. 正交法激光焊接双相钢工艺优化. 应用激光. 2020(06): 1061-1066 .

    Other cited types(3)

Catalog

    Article views (284) PDF downloads (1) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return