Advanced Search
LIU Wei, XIONG Jiangtao, ZHAO Huaxia, LUAN Guohong, LI Jinglong. Interface defects and mechanical properties in friction stir welded lap joint of thin aluminum alloy sheets[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(10): 11-15. DOI: 10.12073/j.hjxb.2018390240
Citation: LIU Wei, XIONG Jiangtao, ZHAO Huaxia, LUAN Guohong, LI Jinglong. Interface defects and mechanical properties in friction stir welded lap joint of thin aluminum alloy sheets[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(10): 11-15. DOI: 10.12073/j.hjxb.2018390240

Interface defects and mechanical properties in friction stir welded lap joint of thin aluminum alloy sheets

More Information
  • Received Date: June 09, 2017
  • 2A12-T4 thin aluminum alloy sheets with different thickness were friction stir lap welded. The influences of welding parameters on defects morphology and mechanical properties of lap joints were investigated in detail. The results show that the hooking defect displayed higher height and angle compared to cold-lap defect, as maximum defects height was 12.7% of the upper sheet thickness. With the increase of welding speed, height of both hooking and cold-lap defects decreased. The height of hooking defect rose to peak and then declined as improving rotation speed further, but the opposite result appeared in cold-lap defect. Highest strength value obtained under 950 r/min and 200 mm/min and joint efficiency can reach 84%. Vickers microhardness distribution exhibited W-shaped profile. Joint softing occurred in the upper sheet and hardness of the bottom nugget zone was higher than the upper zone. Cold-lap defect was the main factor that affected joint properties. All specimens in the tensile-shear test show shear fracture model along the lap interface, which could be attributed to relative low effective lap width.
  • Mishra R S, Ma Z Y. Friction stir welding and processing[J]. Materials Science and Engineering R, 2005, 50(1-2): 1 ? 78.
    Wang G Q, Zhao Y H, Zhang L N, et al. A new weld repair technique for friction stir welded aluminium structure: inertia friction pull plug welding[J]. China Welding, 2017, 26(4): 56 ? 64.
    Yazdanian S, Chen Z W, Littlefair G. Effects of friction stir lap welding parameters on weld features on advancing side and fracture strength of AA6060-T5 welds[J]. Journal of Materials Science, 2012, 47(3): 1251 ? 1261.
    蒋若蓉, 李文亚, 杨夏炜, 等. 薄板AA2024铝合金无针搅拌摩擦焊搭接工艺与接头性能[J]. 焊接学报, 2016, 37(4): 98 ? 102
    Jiang Ruorong, Li Wenya, Yang Xiawei, et al. Pinless friction stir lap welding of AA2024 alloy sheet: joint formability and property[J]. Transactions of the China Welding Institution, 2016, 37(4): 98 ? 102
    Fratini L. FSW of Lap and T-Joints[J]. Advanced Structure Material, 2012, 8: 125 ? 149.
    徐效东, 杨新岐, 周 光, 等. 铝合金2024-T4搅拌摩擦焊搭接接头组织与性能分析[J]. 航空材料学报, 2012, 32(3): 51 ? 56
    Xu Xiaodong, Yang Xinqi, Zhou Guang, et al. Analysis of microstructures and fatigue properties of friction stir overlap welds in AA2024-T4 alloy[J]. Journal of Aeronautical Materials, 2012, 32(3): 51 ? 56
    Yoon T J, Kang C Y. Observations on metallurgical phenomena and formation of onion ring nugget during friction stir lap welding of dissimilar aluminum by a new 3D technique[J]. Materials Letters, 2015, 142: 253 ? 257.
    柯黎明, 潘际銮, 邢 丽, 等. 搅拌摩擦焊焊缝金属塑性流动的抽吸-挤压理论[J]. 机械工程学报, 2009, 45(4): 89 ? 94
    Ke Liming, Pan Jiluan, Xing Li, et al. Sucking-extruding theory for the material flow in friction stir welds[J]. Journal of Mechanical Engineering, 2009, 45(4): 89 ? 94
    宋友宝, 杨新岐, 崔 雷, 等. 异种高强铝合金搅拌摩擦焊搭接接头的缺陷和拉伸性能[J]. 中国有色金属学报, 2014, 24(5): 1167 ? 1174
    Song Youbao, Yang Xinqi, Cui Lei, et al. Defects and tensile properties of friction stir welded lap joints for dissimilar high-strength aluminum alloys[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(5): 1167 ? 1174
    Schmidt H, Hattel J, Wert J. An analytical model for the heat generation in friction stir welding[J]. Modelling and Simulation in Materials Science and Engineering, 2004, 12(1): 143 ? 157.
  • Related Articles

    [1]FENG Yulan, WU Zhisheng, SUN Zhiyu. Numerical simulation of the influence of thickness of cladding material on stress and strain of welded joint of stainless steel composite plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(1): 73-82. DOI: 10.12073/j.hjxb.20230606001
    [2]YUAN Jiaxin, SHAO Fei, BAI Linyue, XU Qian, SUN Bin, WANG Jingtao. Research on the interface of composite plate via explosive welding TC1/1060/6061 based on experiments and numerical simulations[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(9): 81-87. DOI: 10.12073/j.hjxb.20221020002
    [3]TIAN Qichao, MA Honghao, SHEN Zhaowu, CHEN Zijun, ZHAO Kai, Zhao Yang. Explosive welding and performance test of Al0.1CoCrFeNi high-entropy alloy/TA2 composite plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(6): 22-29. DOI: 10.12073/j.hjxb.20200506002
    [4]WANG Bin, LI Sheng, ZHU Fuhui, LI Xifeng. Evaluation on interfacial defect size of diffusion bonding based on ultrasonic non-destructive testing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(8): 34-38. DOI: 10.12073/j.hjxb.20200323004
    [5]FANG Zhonghang, SHI Changgen, FENG Ke, GE Yuheng, YOU Jun. Explosive welding experiment and property test of TA2-1060-TA2 cladding plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 87-92. DOI: 10.12073/j.hjxb.2019400241
    [6]LIAO Dongbo, ZHA Wusheng, LI Wei. Microstructure of stainless steel-carbon steel composite plates produced by explosive welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (5): 99-102.
    [7]ZHANG Bao-qi, WANG De-he, LI Xiao-jie, YANG Wen-bin. Analysis of microstructure in bond interfacial zone of 321-15CrMoR composite plate by explosive welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (2): 108-112.
    [8]LU Ming, WANG Yao-hua, YOU Jun, CAI Li-gen. Explosive Welding Test and Performance Study on Composite Sheet of Tool-Steel with Q235 Carbon-Steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (4): 47-50.
    [9]Fan Jingyun, Wan Guoqing, Fan Jingshun. Electro-magnetic Non-destructive Testing of Friction Welding Defects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1997, (1): 43-49.
    [10]Liu Huoxiang, Guo Rongyuan. HYDRAULIC DESTRUCTION AND FATIGUE TESTS OF CYLINDRICAL MODEL VESSEL WITH DECLIVOUS CRACKS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1981, (3): 111-122.
  • Cited by

    Periodical cited type(10)

    1. 胡超杰,杜阿龙,杨露露,杨斌. 复合材料承压结构健康监测技术研究进展. 力学季刊. 2024(03): 593-613 .
    2. 冯飞,傅彦青,常海林,李洁,曾周燏,李伟. 不锈钢复合板制备及其焊接技术研究进展. 工业建筑. 2024(12): 71-89 .
    3. 刘海春,贾涛,刘宇恒,迟大钊. 高强铝合金T形接头缺陷超声TOFD检测. 焊接. 2024(12): 67-73 .
    4. 刘爱国. 虚拟卧式压力容器焊接生产线设计. 机械制造文摘(焊接分册). 2023(03): 39-43 .
    5. 臧伟,袁雪婷,郭龙创,张杭永. 电站冷凝器用钛钢复合板结合界面均匀性研究. 压力容器. 2022(01): 34-39+68 .
    6. 吴三孩,石端虎,历长云,赵洪枫,米国发. 基于列处理的T型焊件微焦点X射线检测图像缺陷分割. 热加工工艺. 2022(07): 114-118 .
    7. 代欣欣,高向东,郑俏俏,季玉坤. 焊缝缺陷磁光成像模糊聚类识别方法. 焊接学报. 2021(01): 54-57+101 . 本站查看
    8. 孙倩,陈菁,崔晓玉,范蕙萍,张罡. 钛/钢复合板显微组织及拉伸和疲劳断口分析. 兵器材料科学与工程. 2021(03): 128-132 .
    9. 韩玉改,刘宝剑,孙靖东,李二兴. 超厚爆炸复合板覆层裂纹分析. 电焊机. 2020(05): 54-56+135-136 .
    10. 魏于波. 无损检测技术在压力容器检验中的应用研究. 设备监理. 2019(12): 36-37 .

    Other cited types(2)

Catalog

    Article views (375) PDF downloads (7) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return