Advanced Search
MENG Lichun1, SUN Xiaohong1, LIU Xuesong2. Formation and mechanical properties of friction stir diffusion bonding joints with 2024-T4 aluminum alloy by convex-vortex pins[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 67-70. DOI: 10.12073/j.hjxb.2018390070
Citation: MENG Lichun1, SUN Xiaohong1, LIU Xuesong2. Formation and mechanical properties of friction stir diffusion bonding joints with 2024-T4 aluminum alloy by convex-vortex pins[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 67-70. DOI: 10.12073/j.hjxb.2018390070

Formation and mechanical properties of friction stir diffusion bonding joints with 2024-T4 aluminum alloy by convex-vortex pins

More Information
  • Received Date: September 24, 2017
  • Convex-vortex pin was firstly proposed and adopted to join the 2024-T4 aluminum alloy by friction stir diffusion welding. The effect of different stir pins on the cross-section appearance, material flow behavior and mechanical properties was investigated. The results showed that no obvious bending generated in the lap interface under the influence of convex-vortex pins. With the increment of the convex-vortex pins, the width of bottom of nugget zone also increased. The lap joint obtained by four convex-vortex pins presented a higher effective lap width and fracture loads than that of the lap joint obtained by six convex-vortex pins. And the corresponding values were 11.74 mm and 17 531.83 N, respectively.
  • Salari E, Jahazi M, Khodabandeh A,et al. Influence of tool geometry and rotational speed on mechanical properties and defect formation in friction stir lap welded 5456 aluminum alloy sheets[J]. Materials & Design, 2014, 58(6): 381-389.[2] 柯黎明, 魏 鹏, 邢 丽, 等. 双道焊对搅拌摩擦焊搭接界面及接头性能的影响[J]. 焊接学报, 2011, 32(7): 5-8.Ke Liming, Wei Peng, Xing Li,et al. Influence of double passes weld on interface migration and mechanical property of friction stir lap joint[J]. Transactions of the China Welding Institution, 2011, 32(7): 5-8.[3] Yue Y M, Zhou Z L, Ji S D,et al. Improving joint features and tensile shear properties of friction stir lap welded joint by an optimized bottom-half-threaded pin tool[J]. International Journal of Advanced Manufacturing Technology, 2017, 90(9-12): 2597-2603.[4] Li Z W, Yue Y M, Ji S D,et al. Joint features and mechanical properties of friction stir lap welded alclad 2024 aluminum alloy assisted by external stationary shoulder[J]. Materials & Design, 2016, 90: 238-247.[5] Liu H J, Zhao Y Q, Hu Y Y,et al. Microstructural characteristics and mechanical properties of friction stir lap welding joint of Al clad 7B04-T74 aluminum alloy[J]. International Journal of Advanced Manufacturing Technology, 2015, 78(9-12): 1415-1425.[6] Shirazi H, Kheirandish S, Safarkhanian M A. Effect of process parameters on the macrostructure and defect formation in friction stir lap welding of AA5456 aluminum alloy[J]. Measurement, 2015, 76: 62-69.[7] Wang M, Zhang H J, Zhang J B,et al. Effect of pin length on hook size and joint properties in friction stir lap welding of 7B04 aluminum alloy[J]. Journal of Materials Engineering and Performance, 2014, 23(5): 1881-1886.[8] 邢 丽, 魏 鹏, 宋 骁, 等. 轴肩下压量对搅拌摩擦焊搭接接头力学性能的影响[J]. 焊接学报, 2013, 34(3): 15-19.Xing Li, Wei Peng, Song Xiao,et al. Influence of plunge depth of shoulder on mechanical properties of friction stir lap joints[J]. Transactions of the China Welding Institution, 2013, 34(3): 15-19.[9] Girard M, Huneau B, Genevois C,et al. Friction stir diffusion bonding of dissimilar metals[J]. Science & Technology of Welding & Joining, 2013, 15(8): 661-665.[10] 蒋若蓉, 李文亚, 杨夏炜, 等. 薄板 AA2024铝合金无针搅拌摩擦焊搭接工艺与接头性能[J]. 焊接学报, 2016, 37(4): 98-102.Jiang Ruorong, Li Wenya, Yang Xiawei,et al. Pinless friction stir lap welding of AA2024 alloy sheet: joint formability and property[J]. Transactions of the China Welding Institution, 2016, 37(4): 98-102.
  • Related Articles

    [1]LIU Tianyuan, BAO Jinsong, WANG Junliang, ZHENG Xiaohu, WANG Jiacheng. Adaptive edge detection of molten pool based on coarse-grained regularization in restricted solution space[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(12): 49-54. DOI: 10.12073/j.hjxb.20200815002
    [2]HE Qingshan, CUI Zhongming, FU Yucan, WANG Zhixin. Vacuum brazing diamond process under the profile constraint and analysis of agreed height abrasives[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(2): 39-42. DOI: 10.12073/j.hjxb.20191106006
    [3]ZHENG Jian, ZHANG Ke, LUO Zhifeng, WANG Zhigang. Hand-eye calibration of welding robot based on the constraint of spatial line[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(8): 108-113. DOI: 10.12073/j.hjxb.2018390211
    [4]LUO Zhiyong<sup>1,2</sup>, WANG Peng<sup>1</sup>, YOU Bo<sup>2</sup>, LIU Jiahui<sup>1</sup>, MIAO Shidi<sup>1</sup>. Iterative reduction optimization algorithm for quality of welding procedure based on constraint time[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(8): 51-54. DOI: 10.12073/j.hjxb.2018390200
    [5]YANG Yachao, QUAN Huimin, DENG Linfeng, ZHAO Zhenxing. Prediction method of welding machine parameters based on neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(1): 32-36. DOI: 10.12073/j.hjxb.2018390008
    [6]GAO Xiangdong, LIN Jun, XIAO Zhenlin, CHEN Xiaohui. Recognition model of arc welding penetration using ICA-BP neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(5): 33-36.
    [7]WEN Jianli, LIU Lijun, LAN Hu. Penetration state recognition of MIG welding based on genetic wavelet neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (8): 41-44.
    [8]LI Hexi, WANG Guorong, SHI Yonghua, ZHANG Weimin. Stereovision-based detection of 3-D weld seam using epipolar line constraint and laser stripe indication[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 8-12.
    [9]ZHANG Yongzhi, DONG Junhui, ZHANG Yanfei. Prediction of mechanical properties of welded joints based on RBF neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (7): 81-84.
    [10]YU Xiu-ping, SUN Hua, ZHAO Xi-ren, Alexandre Gavrilov. Weld width prediction based on artificial neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (5): 17-19,45.
  • Cited by

    Periodical cited type(15)

    1. 曹新娜,宋路阳,黄玲玲,江涛,张浩强,汪瑞军,于华,詹华,尹丹青,鲍曼雨,龙伟民,钟素娟,纠永涛. 60Si2Mn钢表面激光熔覆铁基涂层的组织及耐磨性研究. 表面技术. 2024(07): 164-170 .
    2. 郭亿,王金凤,苏文超,车亚军,蔡笑宇,柯浩,李文娟. 电弧熔覆韧-硬复合层工艺及性能研究. 精密成形工程. 2024(06): 107-114 .
    3. 吴鹏飞,魏昕,苏建修. 碳化钨对Fe基合金激光熔覆层性能的影响. 热加工工艺. 2024(14): 11-15 .
    4. 宗琳,徐俊尧,王学钊,周建,杨洋,王明. 等离子弧堆焊高铬铁基合金的组织形成机制及对显微硬度的影响. 焊接技术. 2023(01): 17-21+113 .
    5. 黄江,朱志凯,李凯玥,师文庆,吴香林,谢玉萍. 304不锈钢表面激光熔覆铁基复合涂层的组织与性能研究. 应用激光. 2023(06): 29-35 .
    6. 张志彬,舒凤远,王慧鹏,朱鹏华. 不同B含量下钴基合金激光熔覆层组织与性能特征. 锻压技术. 2022(09): 218-223 .
    7. 王永霞,丁国华,梁莉蒙. 送粉速率对铁基合金激光熔覆层组织形貌的影响. 应用激光. 2022(12): 38-44 .
    8. 王聪,毛从强,王冬春,贾丽荣,栾程群,隋江雷. 激光熔覆Fe-Cr-Co-W合金系熔覆层硬质相的微观形貌与摩擦行为. 焊接. 2022(11): 29-34 .
    9. 胡登文,刘艳,陈辉,王梦超. Q960E钢激光熔覆Ni基WC涂层组织及性能. 中国激光. 2021(06): 239-245 .
    10. 柯庆镝,姜丰,张鹏,田常俊,秦小州. 基于修复涂层力学性能影响规律的再制造毛坯表面污染物状态评估. 中国机械工程. 2021(19): 2340-2347+2356 .
    11. 刘涛,田芳,唐秋逸. 激光熔覆大厚度铁基非晶合金的电化学腐蚀特性研究. 绿色环保建材. 2020(02): 26-27 .
    12. 秦建,龙伟民,路全彬,李胜男,黄俊兰. 金刚石/NiCrBSi钎涂接头组织与耐磨性能分析. 材料导报. 2020(S2): 1457-1461 .
    13. 姚志超,李正秋,高向宙,马春春. 基于热力学计算的矿井支架用FeNiCrBC系激光熔覆层成分优化. 焊接. 2020(11): 11-16+36+61-62 .
    14. 张金深,李辉,武爱兵. 煤化工设备耐磨层堆焊材料及工艺. 机械制造文摘(焊接分册). 2020(06): 13-18 .
    15. 秦建,黄俊兰,龙伟民,于德庆,吴铭方,王裕昌. Evolution behavior of phase and performance in Ni-based coating layer based on high temperature thermal field. China Welding. 2020(04): 25-32 .

    Other cited types(2)

Catalog

    Article views (469) PDF downloads (1) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return