戴士杰, 张 熠, 王志平, 等. 基于NURBS 的航空发动机叶片焊接修复的轨迹规划[J]. 焊接学报, 2015, 36(1): 23-26.Dai Shijie, Zhang Yi, Wang Zhiping,et al. Trajectory planning of welded repair for aero-engine blades based on NURBS curve[J]. Transactions of the China Welding Institution, 2015, 36(1): 23-26.[2] 姬书德, 方洪渊, 刘雪松, 等. 叶片的应力状态对混流式水轮机转轮失效的影响[J]. 焊接学报, 2005, 26(2): 52-56.Ji Shude, Fang Hongyuan, Liu Xuesong,et al. Influence of blade stress state on invalidation of francis turbine runner[J]. Transactions of the China Welding Institution, 2005, 26(2): 52-56.[3] 杜 兵, 孙凤莲, 徐玉君, 等. 焊接方法对超低碳马氏体不锈钢焊丝熔敷金属冲击韧性的影响[J]. 焊接学报, 2014, 35(8):1-4.Du Bing, Sun Fenglian, Xu Yujun,et al. Effect of welding methods on impact toughness of ultra-low carbon martensitic stainless steel welding wire deposited metal[J]. Transactions of the China Welding Institution, 2014, 35(8): 1-4.[4] Lee B, Suh J, Lee H,et al. Investigations on fretting fatigue in aircraft engine compressor blade[J]. Engineering Failure Analysis, 2011, 18(7): 1900-1908.[5] Farrhi G H, Tirehdast M, Masoumi K A,et al. Failure analysis of a gas turbine compressor[J]. Engineering Failure Analysis, 2011, 18(1): 474-484.[6] 赵彦华. KMN钢压缩机叶片激光熔覆修复及后续加工特性研究[D]. 济南: 山东大学, 2015.[7] 钱 玲, 吴玉萍, 郭文敏, 等. 高速电弧喷涂 FeNiCrAl/Cr3C2涂层的高温氧化性能和氧化机理[J]. 焊接学报, 2015, 36(2): 83-87.Qian Ling, Wu Yuping, Guo Wenmin,et al. High temperature oxidation resistance and oxidation mechanism of FeNiCrAl/Cr3C2composite coating deposited by high velocity arc spraying[J]. Transactions of the China Welding Institution, 2015, 36(2): 83-87.[8] 王智慧, 王 虎, 贺定勇, 等. 等离子熔覆CoCrCuFeNiMn高熵合金组织研究[J]. 稀有金属材料与工程, 2015, 44(3): 644-648.Wang Zhihui, Wang Hu, He Dingyong,et al. Microstructure characterization of CoCrCuFeNiMn high entropy alloys by plasma cladding[J]. Rare Metal Materials and Engineering, 2015, 44(3): 644-648.[9] 任维彬, 董世运, 徐滨士, 等. 连续/脉冲激光再制造FeCrNiCu合金成形层温度场研究[J]. 材料工程, 2017, 45(5): 1-6.Ren Weibin, Dong Shiyun, Xu Binshi,et al. Temperature field of FeCrNiCu alloy forming layers of continous wave/pulsed laser remanufacture[J]. Journal of Material Engineering, 2017, 45(5): 1-6.[10] Guo Shirui, Shang Huichao, Cui Lujun,et al. Effects of laser cladding layers width on total indicated runout characteristics of steam turbine rotor surface[J]. Rare Metal Materials and Engineering, 2017, 46(3): 612-616.[11] 成 诚. 激光再制造镍基高温合金工艺及其高温拉伸性能的研究[D]. 南京: 南京航空航天大学, 2016.[12] 任维彬, 董世运, 徐滨士, 等. FV520(B)钢叶片激光再制造动态形变规律及试验优化[J]. 哈尔滨工业大学学报, 2017, 49(5): 173-177.Ren Weibin, Dong Shiyun, Xu Binshi,et al. Dynamic deformation and experimental optimization of FV520(B) steel blade for laser remanufacture[J]. Journal of Harbin Institute of Technology, 2017, 49(5): 173-177.[13] 闫世兴, 董世运, 徐滨士, 等. Fe314合金粉末激光快速成形组织与力学性能分析[J]. 中国激光, 2009, 36(11): 3074-3078.Yan Shixing, Dong Shiyun, Xu Binshi,et al. Analysis of Mechanical properties and microstructures of laser rapid forming components with Fe314 alloy powders[J]. Chinese Journal of Lasers, 2009, 36(11): 3074-3078.[14] 朱亚南. 关于阶梯形件激光熔覆再制造工艺设计及应用研究[D]. 秦皇岛: 燕山大学, 2016.[15] 朱晓鹏. 激光熔覆再制造过程中的分层切片方法[D]. 上海: 上海交通大学, 2013.[16] 杨晓红, 杭文先, 秦绍刚, 等. H13钢激光熔覆钴基复合涂层的组织及耐磨性[J].吉林大学学报(工学版), 2017, 47(3): 891-899.Yang Xiaohong, Hang Wenxian, Qin Shaogang,et al. Microstructure and wear properties of Co-based composite coatings on H13 steel surface by laser cladding[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(3): 891-899.[17] Radovan K, Syed H, Yildirim H,et al. Thermo-kineticand-structural modeling and experimental investigations of laser power deposition process[D]. Lyle School of Engineering Southern Methodist University, Dallas Texas, 2009.[18] Almir H, Anna-Karin C, Mattias O,et al. Increased stability in laser metal wire deposition through feedback from optical measurements[J]. Optics and Lasers in Engineering, 2010, 48(6): 478-485.[19] 冯其波. 光学测量技术与应用[M]. 北京: 清华大学出版社, 2010.[20] 李中伟, 王从军, 周 钢. 面结构光测量技术[M]. 武汉: 华中科技大学出版社, 2012.[21] 任维彬, 董世运, 徐滨士, 等. FV520(B)钢叶片模拟件激光再制造成形试验分析[J]. 红外与激光工程, 2014, 43(10): 3303-3308.Ren Weibin, Dong Shiyun, Xu Binshi,et al. Experimental analysis of laser remanufacturing for FV520(B) steel blade simulator[J]. Infrared and Laser Engineering, 2014, 43(10): 3303-3308.
|