Citation: | XU Lianyong1,2, KANG Zhaoyang1,2, LU Yongxin1,2, HAN Yongdian1,2. Analysis of corrosion behavior of carbon steel weld joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(1): 97-101. DOI: 10.12073/j.hjxb.2018390022 |
(1) 随着热输入增大,焊缝金属中针状铁素体减少,而热影响区中针状铁素含量增多,甚至出现魏氏组织.(2) 在模拟油田输出液中,两种接头不同区域的开路电位均不相同.(3) 小热输入焊接接头不同区域腐蚀速率从小到大依次为热影响区,焊缝,母材;大热输入焊接接头不同区域腐蚀速率从小到大依次为焊缝,热影响区,母材. 两种接头总腐蚀速率相比,热输入大的接头耐蚀性较好.参考文献:[1] 张振永. 长输油气管道焊接方法及焊材选用[J]. 焊管, 2004, 27(2): 37-42.Zhang Zhenyong. Long distance oil and gas pipeline welding method and welding material selection[J]. Welded Pipe and Tube, 2004, 27(2): 37-42.[2] Alizadeh M, Bordbar S. The influence of microstructure on the protective properties of the corrosion product layer generated on the welded API X70 steel in chloride solution[J]. Corrosion Science, 2013, 70: 170-179.[3] Avendano-Castro C, Galvan-Martinez R, Contreras A,et al. Corrosion kinetics of pipeline carbon steel weld immersed in aqueous solution containing H2S[J]. Corrosion Engineering, Science and Technology, 2009, 44(2): 149-156.[4] 胡丽华, 张 雷, 许立宁, 等. 3Cr低合金管线钢及焊接接头的CO2腐蚀行为[J]. 北京科技大学学报, 2010(3): 345-350.Hu Lihua, Zhang Lei, Xu Lining,et al. CO2corrosion behavior of 3Cr low alloy pipeline steel and welded joint[J]. Journal of University of Science and Technology Beijing, 2010(3): 345-350.[5] 范 舟, 刘建仪. X70管线钢焊接接头组织及其海水腐蚀规律[J]. 西南石油大学学报(自然科学版), 2009, 31(5): 171-174.Fan Zhou, Liu Jianyi. X70 pipeline steel welding joint organization and corrosion behavior of the sea water[J]. Journal of Southwest Petroleum University (Natural Science Edition), 2009, 31(5): 171-174.[6] 唐 君, 刘 峰. X80钢焊接接头在酸性模拟液中的电化学腐蚀[J]. 辽宁石油化工大学学报, 2012, 31(4): 60-63.Tang Jun, Liu Feng. The electrochemical corrosion of X80 steel welded joint in the acid analog solution[J]. Journal of Liaoning University of Petroleum Chemical Industry, 2012, 31(4): 60-63.[7] 周贤良, 李晖榕, 华小珍, 等. X80管线钢埋弧焊焊接接头的组织和腐蚀性能[J]. 焊接学报, 2011, 32(1): 37-40,80.Zhou Xianliang, Li Huirong, Hua Xiaozhen,et al. Microstructures and corrosion properties of submerged arc welded joint for X80 pipeline steel[J]. Tansactions of the China Welding Institution, 2011, 32(1): 37-40,80.[8] 张俊旺, 王文先, 黄延平, 等. 奥氏体不锈钢焊缝金属的电化学腐蚀性能[J]. 焊接学报, 2007, 28(2): 103-107.Zhang Junwang, Wang Wenxian, Huang Yanping,et al. Electrochemical corrosion properties for weld metal of austenitic stainless steel[J]. Tansactions of the China Welding Institution, 2007, 28(2): 103-107.[9] 王凤平. 腐蚀电化学原理, 方法及应用[M]. 北京: 化学工业出版社, 2008.[10] Huang L, Brown B, Nesic S. Investigation of Environmental Effects on Intrinsic and Galvanic Corrosion of Mild Steel Weldment in CO2 Environment[C]∥Houston: NACE International Publications Division, 2014: 1-15.[11] Farelas F, Galicia M, Brown B,et al. Evolution of dissolution processes at the interface of carbon steel corroding in a CO 2 environment studied by EIS[J]. Corrosion Science, 2010, 52(2): 509-517.[12] 黄安国, 李志远, 余圣甫, 等. 低合金钢焊缝金属的腐蚀行为[J]. 焊接学报, 2005, 26(11): 30-34.Huang Anguo, Li Zhiyuan, Yu Shengfu,et al. Corrosion behavior of low alloy steel weld metal[J]. Tansactions of the China Welding Institution, 2005, 26(11): 30-34.
|
[1] | ZHOU Yang, QI Bojin. Controlled stability of variable polarity welding current in VPPAW process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(4): 16-25. DOI: 10.12073/j.hjxb.20211215003 |
[2] | HUANG Yuhui, ZHANG Jianhui, HU Yulin, SUN Wenxuan, XU Yubin, WANG Yihao. Galvanic corrosion behavior and finite element simulation of overlaying welded nuclear steam turbine rotor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 33-39. DOI: 10.12073/j.hjxb.20210222003 |
[3] | OUYANG Yuqing, HUANG Yuhui, WENG Shuo, XUAN Fuzhen. Galvanic corrosion behavior of nuclear steam turbine welded joint in chloride environment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 153-160. DOI: 10.12073/j.hjxb.2019400171 |
[4] | ZHANG Shufang, HAO Yunfei, WANG Xiaomin, CHEN Hui, LIAO Xiaoyao, LI Mingxing. Intergranular corrosion behavior of 2219 aluminum alloy's welding join[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(4): 22-26. DOI: 10.12073/j.hjxb.20170405 |
[5] | LI Henghe, QIAO Jisen, JIANG Xiaoxia, CHEN Jianhong, WU Yixiong. Microstructures and corrosion properties of laser welded joint of 960 high-strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(2): 75-78. |
[6] | SU Yunhai, WEN Xiaobo, LIU Duo, LIU Zhengjun. Effect of magnetic field current on fatigue properties of magnesium alloy welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (4): 79-82. |
[7] | DENG Cai-yan, ZHANG Yu-feng, HUO Li-xing. J-Resistance curves of welded joints for X56 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (3): 41-44. |
[8] | ZHANG Min, MA Bo. Failure assessment curves of double-parameter J-Q criterion of welded joints containing defect(Ⅱ)[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (6): 38-42. |
[9] | Zhang Min, Ma Bo. Failure assessment curve of double-parameter J-Q criterion of welded joints containing defects (Ⅰ)[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 93-98. |
[10] | YANG Chun-li, HE Jing-shan, WANG Qi-long, ZHOU Tao. Acquisition of Molten Pool Resonance in TIG Welding with Fluctuant Frequency Current[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (2): 6-9. |
1. |
王峰,高梦杰. 湿硫化氢环境HSLA钢焊接接头应力腐蚀开裂的研究进展. 材料保护. 2023(01): 153-162 .
![]() | |
2. |
张敏,仝雄伟,李洁,许帅,贾芳. 焊前和焊后调质处理下25Cr2Ni4MoV钢焊接接头的组织及性能. 机械工程材料. 2021(01): 34-40 .
![]() | |
3. |
张银,康敏,李恒征,刘运通,金美付,Nyambura Samuel Mbugua. Ni-Co-P合金镀层显微硬度及其耐海水腐蚀性. 材料科学与工程学报. 2021(03): 384-392 .
![]() | |
4. |
刘方,周广涛,吴世凯,苏礼季,陈梅峰. 基于电化学方法5Cr钢熔化焊接头CO_2腐蚀行为. 焊接学报. 2019(01): 131-136+167 .
![]() | |
5. |
夏阳,夏涛,罗丽蓉. 土建钢结构用铁素体不锈钢的TIG焊接与腐蚀性能研究. 热加工工艺. 2019(11): 154-157 .
![]() | |
6. |
欧阳玉清,黄毓晖,翁硕,轩福贞. 核电汽轮机焊接转子接头在氯离子环境中的电偶腐蚀行为. 焊接学报. 2019(06): 153-160+168 .
![]() | |
7. |
孔祥峰,张婧,姜源庆,褚东志,李春虎,高楠,吕婧,邹妍. 基于失重法的水下焊接接头腐蚀行为研究. 中国腐蚀与防护学报. 2018(03): 226-232 .
![]() | |
8. |
韩启尧,吴清高,罗立峰. 道路钢护栏用Q345钢焊接接头的耐蚀性能研究. 热加工工艺. 2018(19): 48-52+57 .
![]() |