Advanced Search
AN Feipeng, WANG Qihong, LI Shikai, XIONG Jinhui. Microstructure of electron beam welded thick-wall Ti80 joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(5): 96-99. DOI: 10.12073/j.hjxb.20170521
Citation: AN Feipeng, WANG Qihong, LI Shikai, XIONG Jinhui. Microstructure of electron beam welded thick-wall Ti80 joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(5): 96-99. DOI: 10.12073/j.hjxb.20170521

Microstructure of electron beam welded thick-wall Ti80 joint

More Information
  • Received Date: April 13, 2015
  • Experiments of electron beam welding was carried out for 56 mm thick Ti80 titanium alloy. Then the microstructure of the joint was studied, the results show that microstructure of weld metal is composed of needle martensite α' phase and β phase, and it's size increased by cooling speed's rising. The microstructure of HAZ can be divided into two regions. The microstructure of HAZ near fusion zone(Ⅰzone) was consisted of primary α phase,needle α phase, needle martensite α' and transferred β containing aciculate α; The microstructure of HAZ near the base metal(Ⅱ zone) was consisted of primary α phase, secondary α phase and β phase.
  • 邹武装, 郭晓光, 谢湘云, 等. 钛手册[M]. 北京: 化学工业出版社, 2012.
    Boyer R R. An overview on the use of titanium in the aerospace Industry[J]. Materials Science and Engneering A, 1996, 213(1-2): 103-114.
    李晓延, 巩水利, 关 桥, 等. 大厚度钛合金结构电子束焊接制造基础研究[J]. 焊接学报, 2010, 31(2): 107-112. Li Xiaoyan, Gong Shuili, Guan Qiao, et al. Fundamental research on electron beam welding of heavy section titanium alloy structures[J]. Transactions of the China Welding Institution, 2010, 31(2): 107-112.
    张秉刚, 王 廷, 陈国庆, 等. 大厚度TC21钛合金电子束焊接试验[J]. 焊接学报, 2009, 30(11): 5-8. Zhang Binggang, Wang Ting, Chen Guoqing, et al. Electron beam welding of TC21 titanium alloy with large thick-ness[J]. Transactions of the China Welding, 2009, 30(11): 5-8.
    许鸿吉, 尹丽香, 李晋炜, 等. TC4钛合金电子束焊接接头组织和性能[J]. 焊接学报, 2005, 26(11): 43-46. Xu Hongji, Yin Lixiang, Li Jinwei, et al. Microstructures and properties of TC4 alloy joints welded by the electron beam welding[J]. Transactions of the China Welding Institution, 2005, 26(11): 43-46.
    Saresh N, Pillai M G, Mathe W J. Investigations into the effects of electron beam welding on thick Ti-6A1-4V titanium alloy[J]. Journal of Materials Processing Technology, 2007, 192(4): 83-88.
    Sindo Kou. 焊接冶金学[M]. 北京: 高等教育出版社, 2012.
    刘 昕, 巩水利, 雷永平. TC4钛合金电子束焊接接头相变的热力学特征[J]. 焊接学报, 2010, 31(2): 57-59. Liu Xin, Gong Shuili, Lei Yongpin. Thermodynamic character of phase transformation of TC4 titanium alloy electron beam welded joint[J]. Transactions of the China Welding Institution, 2010, 31(2): 57-59.
  • Related Articles

    [1]YIN Chengjiang, SONG Tianmin, LI Wanli. Effect of high-temperature welding on fatigue life of 2.25Cr1Mo steel joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(4): 106-108.
    [2]WANG Chao, LI Xiaoyan, ZHU Yongxin. Influence of dwell time and loading rate on low cycle fatigue behavior of lead-free solder joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(3): 71-75.
    [3]ZHAO Dongsheng, WU Guoqiang, LIU Yujun, LIU Wen, JI Zhuoshang. Effect of welding residual stress on fatigue life of Invar steel welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (4): 93-95,108.
    [4]ZHANG Liang, HAN Jiguang, GUO Yonghuan, HE Chengwen, LAI Zhongmin, WANG Hongwei. Fatigue life prediction of Sn3.9Ag0.6Cu-soldered joints in WLCSP device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (3): 97-100.
    [5]WEI Helin, WANG Kuisheng. Numerical simulation of PBGA lead-free solder joints with consideration of IMC layer under thermal cycling condition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (1): 109-112.
    [6]SUN Chengzhi, CAO Guangjun. Fatigue life simulation of spot weld based on equivalent structure stresses[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (1): 105-108.
    [7]SHENG Zhong, XUE Songbai, ZHANG Liang, GAO Lili. Fatigue life prediction for flip chip soldered joints based on creep stain model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (10): 53-56.
    [8]ZHANG Liang, XUE Songbai, HAN Zongjie, LU Fangyan, YU Shenglin, LAI Zhongmin. Fatigue life prediction of SnAgCu soldered joints of FCBGA device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (7): 85-88.
    [9]WU Yuxiu, XUE Songbai, ZHANG Ling, HUANG Xiang. Optimum simulation and prediction on thermal fatigue life of soldered joints of QFP devices[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (8): 99-102.
    [10]Ling Chao, Zheng Xiulin. Overloading effect upon fatigue life of 16Mn steel butt welds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1991, (4): 247-251.
  • Cited by

    Periodical cited type(12)

    1. 潘浩东,彭伟,孙国立,王剑,聂富刚,贺光辉. PCB各向异性行为对焊点疲劳寿命的影响研究. 印制电路信息. 2024(04): 43-48 .
    2. 杨浩,王小京,蔡珊珊. Sn57Bi0.1Sb钎料力学性能分析及Anand模型参数确定. 电子与封装. 2024(11): 26-30 .
    3. 李长安,牛玉秀,全本庆,关卫林. 共晶焊后热敏电阻的应力分析及优化. 电子与封装. 2023(09): 5-8 .
    4. 赵光亮,史家涛,刘栋,杨英振,栗军辉. 回流焊透锡致发动机控制器故障的分析与改进. 自动化应用. 2022(03): 27-29 .
    5. 徐鹏博,吕卫民,李永强,刘陵顺. 热循环下集成电路板疲劳寿命预测. 中国电子科学研究院学报. 2022(07): 697-703 .
    6. 邢睿思,王龙,侯传涛,宋俊柏. 锡铅钎料粘塑性行为及其本构描述. 力学季刊. 2022(03): 712-720 .
    7. 邹阳,郭波,段学俊,吴庆堂,魏巍,吴焕. 无铅焊点可靠性的研究进展. 焊接. 2021(08): 41-48+64 .
    8. 王海超,施海健,丁颖洁,马力. 基于数值模拟的印制电路板低透锡率焊盘焊接温度分析. 宇航材料工艺. 2020(04): 30-34 .
    9. 傅显惠,刘德喜,赵红霞,祝大龙. 接收前端3D封装结构的可靠性模拟分析. 电子元件与材料. 2020(09): 105-110 .
    10. 赵福斌,仇原鹰,贾斐,马洪波. 热振加载条件下电子封装结构的疲劳寿命分析. 西安电子科技大学学报. 2019(02): 54-60 .
    11. 彭勃,张普,陈天奇,赵崟岑,吴的海,刘晖. 高功率半导体激光器互连界面可靠性研究. 红外与激光工程. 2018(11): 109-116 .
    12. 肖祥慧,唐荣军,周影良. 基于改进IMC的磁头微焊点寿命预测模型研究. 磁性材料及器件. 2017(05): 60-62 .

    Other cited types(9)

Catalog

    Article views (558) PDF downloads (333) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return