Advanced Search
LIU Shunyao, ZHANG Song, CUI Wendong, ZHANG Chunhua, WU Chenliang, SUN Zunlai. Microstructure and cavitation erosion performance of WxC reinforced Ni-base alloy composite coating by plasma transferred arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(4): 39-42. DOI: 10.12073/j.hjxb.20170409
Citation: LIU Shunyao, ZHANG Song, CUI Wendong, ZHANG Chunhua, WU Chenliang, SUN Zunlai. Microstructure and cavitation erosion performance of WxC reinforced Ni-base alloy composite coating by plasma transferred arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(4): 39-42. DOI: 10.12073/j.hjxb.20170409

Microstructure and cavitation erosion performance of WxC reinforced Ni-base alloy composite coating by plasma transferred arc welding

More Information
  • Received Date: October 18, 2016
  • In-situ synthesis of WxC particle reinforced Ni-base composite coating was synthesized on 316L stainless steel by plasma transferred arc welding. Microstructure, phase constitent, the distribution of reinforced particle, microhardness and cavitation erosion property were investigated by using SEM, EDS, XRD, microhardness tester and ultrasonic vibrator, respectively. Results indicate that Colmonoy 88 coating exhibits a perfect plasma hardfacing tracks and the microstructure is dense. When the molten pool temperature is below 1 655 K, WC and W2C reinforced particles are in situ synthesized during the melting process. When the molten pool temperature is higher than 1 655 K, the in situ synthesized WC particles are dissolved. The phase constituents of the coating are mainly composed of γ-Ni solid solution, in-situ synthesized WxC particles and a small amount of Cr7C3, Fe3W3C and CrB2. The average microhardness of the coating is 1 619 HV, which is 8 times than that of the substrate. The cavitation erosion resistance of the Ni based composite material is 5 times than that of the substrate in 3.5% NaCl solution.
  • Zhang S, Wu C L, Zhang C H, et al. Laser surface alloying of FeCoCrAlNi high-entropy alloy on 304 stainless steel to enhance corrosion and cavitation erosion resistance[J]. Optics & Laser Technology, 2016, 84: 23-31.
    张 松, 李 涛, 关 锰, 等. 316L不锈钢表面B-RE共渗层组织及磨蚀性能[J]. 材料热处理学报, 2016, 37(5): 180-185. Zhang Song, Li Tao, Guan Meng, et al. Microstructure and wear resistance of B-RE penetrating layer on 316L stainless steel[J]. Transactions of Materials and Heat Treatment, 2016, 37(5): 180-185.
    夏 铭, 李改叶, 王泽华, 等. NiCrWFeSiBCCo合金涂层的组织与耐空蚀性[J]. 焊接学报, 2016, 37(1): 111-114. Xia Ming, Li Gaiye, Wang Zehua, et al. Microstructure and cavitation erosion resistance of NiCrW-FeSiBCCo coatings [J]. Transactions of the China Welding Institution, 2016, 37(1): 111-114.
    杜宝帅, 李清明, 王新洪, 等. 激光熔覆原位自生TiC-VC颗粒增强Fe基金属陶瓷涂层[J]. 焊接学报, 2007, 28(4): 65-68. Du Baoshuai, Li Qingming, Wang Xinhong, et al. In situ synthesis of TiC-VC particles reinforced Fe-based metal matrix composite coating by laser cladding[J]. Transactions of the China Welding Institution, 2007, 28(4): 65-68.
    陈丽丽, 王振廷, 杨德云. 原位自生ZrC-ZrB2/铁基氩弧熔覆层[J]. 焊接学报, 2014, 35(12): 89-92. Chen Lili, Wang Zhenting, Yang Deyun.In-situ synthesis of Fe-based ZrC-ZrB2 composite coating produced by GTAW [J]. Transactions of the China Welding Institution, 2014, 35(12): 89-92.
    傅 卫, 王惜宝, 陈国喜. 镍基WC等离子弧熔敷层的组织和高温磨损性能[J]. 焊接学报, 2009, 30(5): 65-67. Fu Wei, Wang Xibao, Chen Guoxi.Microstructure and high temperature abrasion resistance of Ni-based WC composite layer deposited by plasma arc[J]. Transactions of the China Welding Institution, 2009, 30(5): 65-67.
    ASTM Standard. A G32-92, Standard method of vibratory cavitation erosion test[S]. USA, American Society for Testing and Material, 1994.
    郝士明, 蒋 敏, 李洪晓. 材料热力学(第二版)[M]. 北京: 化学工业出版社, 2010.
    叶大伦. 实用无机物热力学数据手册(第二版)[M]. 北京: 冶金工业出版社, 2002.
    Sudha C, Shankar P, Rao R V S, et al. Microchemical and microstructural studies in a PTA weld overlay of Ni-Cr-Si-B alloy on AISI 304L stainless steel[J]. Surface & Coatings Technology, 2008, 202(10): 2103-2112.
    左亚天. 挤压辊修复用耐磨堆焊合金与45钢母材的结合强度研究[D]. 吉林: 吉林大学, 2013.
  • Related Articles

    [1]YIN Chengjiang, SONG Tianmin, LI Wanli. Effect of high-temperature welding on fatigue life of 2.25Cr1Mo steel joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(4): 106-108.
    [2]WANG Chao, LI Xiaoyan, ZHU Yongxin. Influence of dwell time and loading rate on low cycle fatigue behavior of lead-free solder joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(3): 71-75.
    [3]ZHAO Dongsheng, WU Guoqiang, LIU Yujun, LIU Wen, JI Zhuoshang. Effect of welding residual stress on fatigue life of Invar steel welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (4): 93-95,108.
    [4]ZHANG Liang, HAN Jiguang, GUO Yonghuan, HE Chengwen, LAI Zhongmin, WANG Hongwei. Fatigue life prediction of Sn3.9Ag0.6Cu-soldered joints in WLCSP device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (3): 97-100.
    [5]WEI Helin, WANG Kuisheng. Numerical simulation of PBGA lead-free solder joints with consideration of IMC layer under thermal cycling condition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (1): 109-112.
    [6]SUN Chengzhi, CAO Guangjun. Fatigue life simulation of spot weld based on equivalent structure stresses[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (1): 105-108.
    [7]SHENG Zhong, XUE Songbai, ZHANG Liang, GAO Lili. Fatigue life prediction for flip chip soldered joints based on creep stain model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (10): 53-56.
    [8]ZHANG Liang, XUE Songbai, HAN Zongjie, LU Fangyan, YU Shenglin, LAI Zhongmin. Fatigue life prediction of SnAgCu soldered joints of FCBGA device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (7): 85-88.
    [9]WU Yuxiu, XUE Songbai, ZHANG Ling, HUANG Xiang. Optimum simulation and prediction on thermal fatigue life of soldered joints of QFP devices[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (8): 99-102.
    [10]Ling Chao, Zheng Xiulin. Overloading effect upon fatigue life of 16Mn steel butt welds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1991, (4): 247-251.
  • Cited by

    Periodical cited type(12)

    1. 潘浩东,彭伟,孙国立,王剑,聂富刚,贺光辉. PCB各向异性行为对焊点疲劳寿命的影响研究. 印制电路信息. 2024(04): 43-48 .
    2. 杨浩,王小京,蔡珊珊. Sn57Bi0.1Sb钎料力学性能分析及Anand模型参数确定. 电子与封装. 2024(11): 26-30 .
    3. 李长安,牛玉秀,全本庆,关卫林. 共晶焊后热敏电阻的应力分析及优化. 电子与封装. 2023(09): 5-8 .
    4. 赵光亮,史家涛,刘栋,杨英振,栗军辉. 回流焊透锡致发动机控制器故障的分析与改进. 自动化应用. 2022(03): 27-29 .
    5. 徐鹏博,吕卫民,李永强,刘陵顺. 热循环下集成电路板疲劳寿命预测. 中国电子科学研究院学报. 2022(07): 697-703 .
    6. 邢睿思,王龙,侯传涛,宋俊柏. 锡铅钎料粘塑性行为及其本构描述. 力学季刊. 2022(03): 712-720 .
    7. 邹阳,郭波,段学俊,吴庆堂,魏巍,吴焕. 无铅焊点可靠性的研究进展. 焊接. 2021(08): 41-48+64 .
    8. 王海超,施海健,丁颖洁,马力. 基于数值模拟的印制电路板低透锡率焊盘焊接温度分析. 宇航材料工艺. 2020(04): 30-34 .
    9. 傅显惠,刘德喜,赵红霞,祝大龙. 接收前端3D封装结构的可靠性模拟分析. 电子元件与材料. 2020(09): 105-110 .
    10. 赵福斌,仇原鹰,贾斐,马洪波. 热振加载条件下电子封装结构的疲劳寿命分析. 西安电子科技大学学报. 2019(02): 54-60 .
    11. 彭勃,张普,陈天奇,赵崟岑,吴的海,刘晖. 高功率半导体激光器互连界面可靠性研究. 红外与激光工程. 2018(11): 109-116 .
    12. 肖祥慧,唐荣军,周影良. 基于改进IMC的磁头微焊点寿命预测模型研究. 磁性材料及器件. 2017(05): 60-62 .

    Other cited types(9)

Catalog

    Article views (431) PDF downloads (324) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return