Advanced Search
LI Yuanbo, LI Xiao, WANG Shiqing, DONG Hui. Numerical simulation of arc in sheet slanting electrode tungsten insert gas welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(4): 7-12. DOI: 10.12073/j.hjxb.20170402
Citation: LI Yuanbo, LI Xiao, WANG Shiqing, DONG Hui. Numerical simulation of arc in sheet slanting electrode tungsten insert gas welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(4): 7-12. DOI: 10.12073/j.hjxb.20170402

Numerical simulation of arc in sheet slanting electrode tungsten insert gas welding

More Information
  • Received Date: March 26, 2016
  • The three-dimensional quasi-steady state mathematical model of arc in sheet slanting electrode tungsten insert gas welding is presented based on the fluid dynamic equations and Maxwell equations. The distributions of temperature field, velocity field, electrical field and current density about arc in sheet slanting tungsten electrode are obtained. The results show that the temperature field, velocity field, electric field and current density of arc are symmetric in the thickness direction of sheet slanting tungsten electrode. The maximum temperature, velocity and current density of arc in sheet slanting tungsten electrode are lower than those of arc in cylinder tungsten electrode under the similar parameters. The sheet slanting tungsten electrode can change the gap width of arc discharge to lead the current density concentrate on the location with smaller gap width, whereas the current density would also flow backward along the hypotenuse of sheet slanting tungsten electrode due to that the arc lags behind sheet slanting tungsten electrode's motion, consequently the distribution range of current density and temperature field expand in width direction of sheet slanting tungsten electrode. The local extensive distribution of current density would occur with variation of tilt angle of hypotenuse of sheet slanting tungsten electrode, and this causes the shift of cathode jet and region with higher temperature near cathode.
  • Engelhard G, Habip L M, Pellkofer D, et al. Optimization of residual welding stresses in austenitic steel piping: proof testing and numerical simulation of welding and post welding processes[J]. Nuclear Engineering and Design, 2000, 198(1): 141-151.
    李渊博. 绝缘片约束TIG电弧的静电探针分析及其在超窄间隙中的加热特性[D]. 兰州: 兰州理工大学, 2013.
    李渊博, 芦 甜, 朱 亮, 等. 片状偏钨极氩弧载流区的静电探针分析[J]. 焊接学报, 2015, 36(12): 22-26. Li Yuanbo, Lu Tian, Zhu Liang, et al. Electrostatic probe analysis of current-carrying region of sheet slanting tungsten electrode arc[J]. Transactions of the China Welding Institution, 2015, 36(12): 22-26.
    Tsai M C, Kou S. Heat transfer and fluid flow in welding arcs produced by sharpened and flat electrodes[J]. Int. J. Heat Mass Transfer, 1990, 33(10): 2089-2098.
    Abid M, Parvez S, Nash D H. Effect of different electrode tip angles with tilted torch in stationary gas tungsten arc welding A 3D simulation[J]. International Journal of Pressure Vessels and Piping, 2013, 108(4): 51-60.
    Ding X P, Li H, Yang L J, et al. Numerical analysis of arc characteristics in two-electrode GTAW[J]. The International Journal of Advanced Manufacturing Technology, 2014, 70(9): 1867-1874.
    Bini R, Monno M, Boulos M I. Numerical and experimental study of transferred arcs in argon[J]. Journal of Physics, D: Applied Physics, 2006, 39(15): 3253-3266.
    Murphy A B, Tanaka M, Tashiro S, et al. A computational investigation of the effectiveness of different shielding gas mixtures for arc welding[J]. Journal of Physics, D: Applied Physics, 2009, 42(11): 1-14.
    Lago F, Gonzalez J J, Freton P, et al. A numerical modeling of an electric arc and its interaction with the anode: part Ⅲ. application to the interaction of a lightning strike and an aircraft in flight[J]. Journal of Physics. D: Applied Physics, 2006, 39(5): 2294-2310.
    Choo R T C, Szekely J, Westhoff R C. On the calculation of the free surface temperature of gas-tungsten-arc weld pools from first principles: part I. modeling the welding arc[J]. Metallurgical and Materials Transactions, 1992, 23(3): 357-369.
    Fanara C, Vilarinho L. Electrical characterization of atmospheric pressure arc plasmas[J]. European Physical Journal D, 2004, 28(2): 241-251.
  • Related Articles

    [1]LEI Zheng, ZHU Zongtao, LI Yuanxing, CHEN Hui. Numerical simulation of TIG arc characteristics of hollow tungsten electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 9-14, 27. DOI: 10.12073/j.hjxb.20210131003
    [2]ZONG Xuemei, WU Bin, ZHANG Liping, LI Wen. Numerical simulation of temperature field in weaving welding based on ladder model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(11): 9-12.
    [3]LU Changjin, TANG Hong, YAO Qiwei, YU Miao, SHEN Qing, LEI Ming. Numerical simulation of resistance spot welding of three-layer galvanized steel sheets[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (6): 105-108.
    [4]ZENG Zhi, WANG Lijun, ZHANG Han. Application of substructure and submodelling on 3D numerical simulation of welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (7): 89-93.
    [5]ZHANG Zenglei, SHI Qingyu, LIU Yuan, YAN Dongyang. Establishment and application of material models for numerical simulation of welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (2): 45-48.
    [6]WANG Jianmin, ZHU Xi, LIU Runquan. Three dimensional numerical simulation for explosive welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (5): 109-112.
    [7]ZHANG Quan-zhong, ZHANG Li-wen, LIU Wei-wei, ZHANG Xing-guo, QU Shen, ZHU Wen-hui. Comparison of 3D and 2D numerical simulation of continuous-drive friction welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (10): 105-108.
    [8]ZHANG Jian-qiang, ZHAO Hai-yan, WU Su, LU An-li, CAI Zhi-peng, WANG Yu. Research progress of numerical simulation of three-dimensional welding stress and distortion in welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (5): 91-96.
    [9]WU Yan-gao, LI Wu-shen, ZOU Hong-jun, FENG Ling-zhi. State-of-the-art of Numerical Simulation In Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (3): 89-92.
    [10]Wang Jianhua, Zhong Xiaomin, Qi Xinhai. 3-D numerical simulation of deformations in pipe-plate joint with holes[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1995, (3): 140-145.
  • Cited by

    Periodical cited type(4)

    1. 李渊博,郑文星,叶韬,麻帅川,赵锡龙. 脉冲电流对超窄间隙中绝缘固壁约束片状钨极电弧加热特性的影响. 机械工程学报. 2023(22): 302-311 .
    2. 陈豪杰,刘海华,李亮玉,赵淘. 微束等离子体弧焊电弧物理特性多场耦合分析. 核聚变与等离子体物理. 2020(03): 283-288 .
    3. 杨涛,李霄,李渊博,李光. 窄间隙TIG焊接电弧特性研究方法概述. 热加工工艺. 2019(19): 1-5 .
    4. 肖磊,樊丁,黄健康. 交变磁场作用下的GTAW非稳态电弧数值模拟. 机械工程学报. 2018(16): 79-85 .

    Other cited types(4)

Catalog

    Article views (484) PDF downloads (551) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return