Citation: | YANG Bo, DENG Jiarong, LIU Xin, LV Qibing. Liquid bridge blasting evolution behavior of rail AC flash welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(2): 105-112. DOI: 10.12073/j.hjxb.20230220001 |
The heating of the weldment, the protection of the end face, the removal of oxides and dirt during the rail flash welding process are all caused by the formation and blasting process of the liquid bridge. This paper analyzing the evolution behavior of the liquid bridge during the welding process plays an important role in understanding the rail flash welding process and further studying the welding heating and protection mechanism. Through the flash welding test of specially designed rail joints and conventional rail joints, the liquid bridge formation and blasting process images of rail AC flash welding process were collected by high-speed photography, and the obtained graphics were calculated and analyzed. The research results show that the formation and blasting time of the liquid bridge is millisecond, which will generate a large amount of high-pressure metal vapor beneficial to the end face protection and liquid bridge blasting, and the high temperature metal jet velocity after blasting can reach more than 90 m/s; During the formation and growth of the liquid bridge, there will be dynamic movement on the rail end face that will affect the uniform heating of the rail end face. The liquid bridge blasting is not at the initial formation position of the liquid bridge; During the welding process, the melt can appear the phenomenon of "secondary explosion"; Not only can the rail at the moving end form a liquid bridge, but also the vibration of the molten metal layer at the end is conducive to the formation of a liquid bridge.
[1] |
Ghazanfari M, Tehrani P H. Experimental and numerical investigation of the characteristics of flash-butt joints used in continuously welded rails[J]. Proceedings of the Institution of Mechanical Engineers, 2020, 234(1): 65 − 79. doi: 10.1177/0954409719830189
|
[2] |
Zhang J, Zhang X, Li D, et al. Extrusion behavior of impurities in upsetting process of rail flash butt welding based on finite element method[J]. Journal of Materials Research, 2019, 34(19): 3351 − 3360. doi: 10.1557/jmr.2019.221
|
[3] |
Stone H, Iwand C, Kristan J, et al. Flash butt rail weld vertical fractures[J]. Journal of Failure Analysis and Prevention, 2015, 15: 33 − 38. doi: 10.1007/s11668-014-9916-1
|
[4] |
Ozakgul K, Piroglu F, Caglayan O. An experimental investigation on flash butt welded rails[J]. Engineering Failure Analysis, 2015, 57: 21 − 30. doi: 10.1016/j.engfailanal.2015.07.009
|
[5] |
Han Y Q, Han J, Chen Y, et al. Stability of fiber laser-MIG hybrid welding of high strength aluminum alloy[J]. China Welding, 2021, 30(3): 7 − 11.
|
[6] |
吴开源, 陈梓威, 黄浩, 等. 低频相位对双丝双脉冲GMAW熔滴过渡和焊缝成形的影响[J]. 焊接学报, 2022, 43(7): 43 − 48.
Wu Kaiyuan, Chen Ziwei, Huang Hao, et al. Effect of low frequency phase on droplet transfer and weld formation of twin wire double-pulse GMAW[J]. Transactions of the China Welding Institution, 2022, 43(7): 43 − 48.
|
[7] |
何顺鹏, 张曦, 李达, 等. U75V钢轨闪光焊闪光过程有限元分析[J]. 热加工工艺, 2019, 48(7): 233 − 236.
He Shunpeng, Zhang Xi, Li Da, et al. Finite element analysis of flash welding process of U75V rail flash welding[J]. Hot Working Technology, 2019, 48(7): 233 − 236.
|
[8] |
Wang X, Liu X, Zhang J, et al. Numerical simulation of end face heating in alternating current flash butt welding based on electrical–thermal bidirectional coupling[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120(1-2): 173 − 183. doi: 10.1007/s00170-021-08599-7
|
[9] |
张琪. 基于数字成像技术的闪光过梁爆破机制及焊接接头性能相关性研究[D]. 北京: 中国铁道科学研究院, 2017.
Zhang Qi. Research on mechanism of flash beam blasting based on digital imaging technology and pertinence of welded joint property [D]. Beijing: China Academy of Railway Sciences, 2017.
|
[10] |
宋宏图. 钢轨交流闪光焊接过程过梁爆破特征分析[J]. 焊接学报, 2018, 39(3): 120 − 123. doi: 10.12073/j.hjxb.2018380082
Song Hongtu. Study of flash beam blasting characteristics in the AC flash butt welding of rail[J]. Transactions of the China Welding Institution, 2018, 39(3): 120 − 123. doi: 10.12073/j.hjxb.2018380082
|
[11] |
王莹莹. 钢轨闪光焊接头灰斑和微裂纹缺陷形成机理研究[D]. 北京: 中国铁道科学研究院, 2018.
Wang Yingying. Research on formation mechanism of flat spots and micro-crack defects in rail welded joints[D]. Beijing: China Academy of Railway Sciences, 2018.
|
[12] |
曲睿智, 黄良沛, 肖冬明. 选择性激光熔化过程中熔池演变与金属飞溅特性数值模拟[J]. 航空学报, 2022, 43(4): 405 − 424.
Qu Ruizhi, Huang Liangpei, Xiao Dongming. Numerical simulation of melt pool evolution and metal spattering characterization during selective laser melting processing[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(4): 405 − 424.
|
1. |
毛晴. 基于X射线图像和Faster R-CNN的焊缝质量检测算法研究. 机械制造. 2025(04): 30-34+40 .
![]() | |
2. |
李选臣. 基于区域特征推荐神经网络的数字图像信息识别方法研究. 自动化与仪器仪表. 2024(02): 51-54 .
![]() | |
3. |
张婷,王登武. 基于空洞分层注意力胶囊网络的X射线焊缝缺陷识别方法. 宇航计测技术. 2024(02): 45-51 .
![]() | |
4. |
王睿,高少泽,刘卫朋,王刚. 一种轻量级高效X射线焊缝图像缺陷检测方法. 焊接学报. 2024(07): 41-49 .
![]() | |
5. |
李巍,李太江,杨略,蔡焕捷,李蕾,陈盛广,曹小龙. 改进的U-Net算法在管道内焊缝缺陷图像分割中的应用. 焊接. 2024(11): 73-80 .
![]() | |
6. |
左浩. 焊接机器人焊缝完整程度图像识别算法研究. 焊接技术. 2023(02): 77-82+114 .
![]() | |
7. |
董蕾,雷伟强,李荣涛. 基于改进YOLOv5的矿用钢丝绳芯输送带破损检测方法. 山西焦煤科技. 2023(02): 15-17 .
![]() | |
8. |
段岳飞,马嵩华,胡天亮. 基于全卷积神经网络的焊缝识别方法. 制造技术与机床. 2023(04): 44-49 .
![]() | |
9. |
滕碧红,孙海信. 基于传感器阵列的纹理图像表面缺陷识别算法. 计算机仿真. 2023(03): 285-288+301 .
![]() | |
10. |
陈滔. 基于改进粒子群优化的K-means聚类的焊接缺陷图像识别. 遵义师范学院学报. 2023(02): 85-88 .
![]() | |
11. |
吴昉,王伟,刘卫朋. 结合注意力机制和卷积神经网络的X射线焊缝缺陷检测. 科学技术与工程. 2023(08): 3387-3395 .
![]() | |
12. |
许馨元,李越鹏,王媛媛. 基于改进CURE聚类算法的网络用户异常行为识别方法. 微型电脑应用. 2023(05): 174-177+181 .
![]() | |
13. |
朱秀森,高鸿波,胡茂春,吕成澍,张士晶,王战,胡坦能. 基于暗通道技术的核电用不锈钢环焊缝DR图像质量优化. 无损检测. 2023(04): 27-32+86 .
![]() | |
14. |
姚远,杨济硕,沈清澜,姜建华. 基于卷积神经网络的焊缝缺陷超声图像识别方法研究. 计算机时代. 2023(07): 105-107+113 .
![]() | |
15. |
綦振国,杨晨菲. 卷积神经网络在射线检测中的应用浅析. 无损探伤. 2023(04): 11-13+41 .
![]() | |
16. |
张祯祥. 基于图像特征的高速铁路轨道焊缝缺陷检测. 现代城市轨道交通. 2023(07): 27-31 .
![]() | |
17. |
潘海鸿,李松莛,陈琳,邓火生,雷运理. 基于改进DG-MobileNet模型的焊缝缺陷识别方法. 组合机床与自动化加工技术. 2023(08): 127-130 .
![]() | |
18. |
李海瑛,李娟,张钰,王哲. 复杂背景下医学图像规则区域纹理缺陷识别. 计算机仿真. 2023(10): 291-295 .
![]() | |
19. |
徐海明. 基于改进时频分析的X射线管无损检测技术研究. 机械设计与制造工程. 2023(12): 87-92 .
![]() | |
20. |
秦志伟,陈黎. 基于图像风格迁移技术生成图像验证码研究. 计算机与数字工程. 2023(10): 2444-2451 .
![]() | |
21. |
陈琳,陈英蓉,庞再军,刘冠良,潘海鸿. 基于EC双流模型的焊接缺陷图像识别. 组合机床与自动化加工技术. 2022(01): 94-97 .
![]() | |
22. |
王睿,胡云雷,刘卫朋,李海涛. 基于边缘AI的焊缝X射线图像缺陷检测. 焊接学报. 2022(01): 79-84+118 .
![]() | |
23. |
段韶鹏. 基于深度学习的网路图像缺陷识别方法. 长江信息通信. 2022(03): 89-91 .
![]() | |
24. |
田萌. 基于VR技术的X射线图像安检危险品自动识别. 计算技术与自动化. 2022(01): 123-128 .
![]() | |
25. |
张龙飞,高炜欣,冯小星. 基于卷积神经网络X射线环焊缝缺陷检测. 焊接. 2022(03): 26-34 .
![]() | |
26. |
杨国威,张金丽. 基于光栅投影的焊后焊缝表面三维测量. 焊接学报. 2022(04): 100-105+112+119-120 .
![]() | |
27. |
刘文婧,张二清,王建国,王少锋,黄顺舟. 焊缝缺陷图像智能分类研究. 组合机床与自动化加工技术. 2022(06): 150-154 .
![]() | |
28. |
张思,石峰. 基于机器视觉的焊缝缺陷识别方法研究. 河南化工. 2022(06): 15-19 .
![]() | |
29. |
程松,戴金涛,杨洪刚,陈云霞. 基于改进型YOLOv4的焊缝图像检测与识别. 激光与光电子学进展. 2022(16): 105-111 .
![]() | |
30. |
代岩,黄瑞,方田,徐志坤. 基于深度学习的热轧过钢检测追踪系统. 冶金自动化. 2022(05): 76-84 .
![]() | |
31. |
詹志明. 基于图像处理的金属机械零件表面微缺陷检测方法. 湖南文理学院学报(自然科学版). 2022(04): 19-24 .
![]() | |
32. |
唐东林,杨洲,程衡,刘铭璇,周立,丁超. 浅层卷积神经网络融合Transformer的金属缺陷图像识别方法. 中国机械工程. 2022(19): 2298-2305+2316 .
![]() | |
33. |
刘欢,刘骁佳,王宇斐,王宁,曹立俊. 基于复合卷积层神经网络结构的焊缝缺陷分类技术. 航空学报. 2022(S1): 165-172 .
![]() | |
34. |
耿宾涛,贾国伟. 激光视觉图像引导机械焊缝识别方法研究. 应用激光. 2022(10): 1-8 .
![]() | |
35. |
王靖然,王桂棠,杨波,王志刚,符秦沈,杨圳. 深度学习在焊缝缺陷检测的应用研究综述. 机电工程技术. 2021(03): 65-68 .
![]() | |
36. |
张振洲,熊凌,李克波,陈刚,但斌斌,吴怀宇. 基于改进GoogLeNet的锌渣识别算法. 武汉科技大学学报. 2021(03): 182-187 .
![]() | |
37. |
付琳. 存在冗余特征的Relief图像缺陷识别算法研究. 电脑知识与技术. 2021(20): 106-107 .
![]() | |
38. |
刘霞,金忠庆. 基于改进卷积神经网络的飞机桁架焊缝缺陷识别与测试. 航空制造技术. 2021(Z2): 34-38 .
![]() | |
39. |
袁泽浩,李广超,解庆生. CPP900自动焊设备在长输管道焊接中的应用. 焊接. 2021(09): 57-60+64 .
![]() |