Advanced Search
Binggang ZHANG, Yifan WANG, Houqin WANG. Research status and development trend of electron beam welding for advanced materials and dissimilar materials[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 95-101. DOI: 10.12073/j.hjxb.20220506001
Citation: Binggang ZHANG, Yifan WANG, Houqin WANG. Research status and development trend of electron beam welding for advanced materials and dissimilar materials[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 95-101. DOI: 10.12073/j.hjxb.20220506001

Research status and development trend of electron beam welding for advanced materials and dissimilar materials

More Information
  • Received Date: May 05, 2022
  • Available Online: July 31, 2022
  • Electron beam welding is an advanced connection technology with rapid progress and vigorous development in recent years. With the increasingly mature technology, its competitiveness in the industrial field is increasing, and has been widely accepted by industrial sectors. In this paper, the research status of electron beam welding in the connection of advanced materials such as high temperature titanium alloys, superalloys, refractory metals and intermetallic compounds, and various dissimilar materials that are mutually soluble and difficult to dissolve are reviewed. The typical study results in welding defect control, welding process optimization, welding mechanism research obtained by researchers at home and abroad are briefly introduced, and the corresponding specific problems and welding process of electron beam welding for advanced materials and dissimilar materials are summarized. The special technical methods such as energy control and metallurgical regulation used in electron beam welding are generalized.
  • 冯吉才. 异种材料连接研究进展综述[J]. 航空学报, 2022, 43(2): 6 − 42.

    Feng Jicai. Research progress on dissimilar materials joining[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 6 − 42.
    冯吉才, 王廷, 张秉刚, 等. 异种材料真空电子束焊接研究现状分析[J]. 焊接学报, 2009, 30(10): 108 − 112.

    Feng Jicai, Wang Ting, Zhang Binggang, et al. Research status analysis of electron beam welding for joining of dissimilar materials[J]. Transactiongs of the China Welding Institution, 2009, 30(10): 108 − 112.
    路志芳. 电子束焊接国内专利技术综述[J]. 现代制造技术与装备, 2019(5): 216 − 217. doi: 10.3969/j.issn.1673-5587.2019.05.110

    Lu Zhifang. Overview of ratent technology of electron beam welding in China[J]. Modern Manufacturing Technology and Equipment, 2019(5): 216 − 217. doi: 10.3969/j.issn.1673-5587.2019.05.110
    Cheng M, Yu B, Guo R, et al. Electron beam welding of a novel near α high temperature titanium alloy powder compact: effect of post-welding heat treatment on tensile properties[J]. Journal of Materials Research and Technology, 2021, 10: 153 − 163. doi: 10.1016/j.jmrt.2020.12.022
    Fu P, Mao Z, Lin J, et al. Temperature field modeling and microstructure analysis of EBW with multi-beam for near α titanium alloy[J]. Vacuum, 2014, 102: 54 − 62. doi: 10.1016/j.vacuum.2013.11.002
    Liu H, Song J, Cao X, et al. Enhancement of fatigue resistance by direct aging treatment in electron beam welded Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy joint[J]. Materials Science and Engineering:A, 2022, 829: 142168. doi: 10.1016/j.msea.2021.142168
    Liu F, Chen Y, He C, et al. Very long life fatigue failure mechanism of electron beam welded joint for titanium alloy at elevated temperature[J]. International Journal of Fatigue, 2021, 152: 106446. doi: 10.1016/j.ijfatigue.2021.106446
    Zhang S, Ma Y, Huang S, et al. Temperature-gradient induced microstructure evolution in heat-affected zone of electron beam welded Ti-6Al-4V titanium alloy[J]. Journal of Materials Science & Technology, 2019, 35(8): 1681 − 1690.
    Zeng C, Zhang Y, Hu J, et al. The role of microstructure on corrosion fatigue behavior of thick-plate Ti-6Al-4V joint via vacuum electron beam welding[J]. Vacuum, 2020, 182: 109714. doi: 10.1016/j.vacuum.2020.109714
    Lu Y, Turner R, Brooks J, et al. A study of process-induced grain structures during steady state and non-steady state electron-beam welding of a titanium alloy[J]. Journal of Materials Science & Technology, 2022, 113: 117 − 127.
    刘武猛, 郭纯, 吴随松. 高温合金焊接研究现状及发展趋势[J]. 金属加工(热加工), 2022(1): 44 − 48.

    Liu Wumeng, Guo Chun, Wu Suisong. Research status and development trend of superalloy welding[J]. Machinist Metal Forming, 2022(1): 44 − 48.
    Han K, Wang H, Shen L, et al. Analysis of cracks in the electron beam welded joint of K465 nickel-base superalloy[J]. Vacuum, 2018, 157: 21 − 30. doi: 10.1016/j.vacuum.2018.08.011
    Zhang Z, Wang S, Chen Y, et al. Microstructure and properties of 3D-GH3625 electron beam welded[J]. IOP Conference Series Materials Science and Engineering, 2018, 423(1): 12074.
    Sun W, Wang S, Hong M, et al. Effect of heat input on microstructure and mechanical properties of IC10 Ni3Al-based superalloy electron beam welding joint[J]. Vacuum, 2020, 182: 109765. doi: 10.1016/j.vacuum.2020.109765
    Taheri M, Kashani-Bozorg S F, Alizadeh A, et al. Analysis of liquation and solidification cracks in the electron beam welding of GTD-111 nickel-base superalloy joint[J]. Materials Research Express, 2021, 8(7): 76507. doi: 10.1088/2053-1591/ac1007
    Cheng Y, Chen J, Shiue R, et al. The evolution of cast microstructures on the HAZ liquation cracking of Mar-M004 weld[J]. Metals (Basel ), 2018, 8(1): 35 − 48. doi: 10.3390/met8010035
    Han K, Wang H, Peng F, et al. Investigation of microstructure and mechanical performance in IN738LC joint by vacuum electron beam welding[J]. Vacuum, 2019, 162: 214 − 227. doi: 10.1016/j.vacuum.2018.12.047
    Chen J, Zhang P, Mo T, et al. Effect of TiC particles on ductility dip cracking susceptibility of Ni-base superalloy[J]. Science and Technology of Welding and Joining, 2021, 26(4): 294 − 300. doi: 10.1080/13621718.2021.1902609
    Sonar T, Balasubramanian V, Malarvizhi S, et al. An overview on welding of Inconel 718 alloy—Effect of welding processes on microstructural evolution and mechanical properties of joints[J]. Materials Characterization, 2021, 174: 110997. doi: 10.1016/j.matchar.2021.110997
    Han K, Wang H, Peng F, et al. Effect of thermal compensation treatment on the microstructure and mechanical properties of IN738LC joint by electron beam welding[J]. Journal of Manufacturing Processes, 2020, 58: 536 − 550. doi: 10.1016/j.jmapro.2020.08.024
    Wen S, Liu Z, Mi D, et al. Revealing the fatigue crack propagation mechanism of a Ni-based superalloy electron beam welded joint through in-situ SEM observation[J]. International Journal of Fatigue, 2022, 162: 106955. doi: 10.1016/j.ijfatigue.2022.106955
    Gupta R K, Anil Kumar V, Sukumaran A, et al. High-temperature tensile behaviors of base metal and electron beam-welded joints of Ni-20Cr-9Mo-4Nb superalloy[J]. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 2018, 49(7): 2654 − 2672. doi: 10.1007/s11661-018-4652-x
    Keshavarz M K, Turenne S, Bonakdar A. Solidification behavior of inconel 713LC gas turbine blades during electron beam welding[J]. Journal of Manufacturing Processes, 2018, 31: 232 − 239. doi: 10.1016/j.jmapro.2017.11.021
    张永赟, 王廷, 李宁, 等. PM-TZM钼合金电子束焊接特性[J]. 焊接学报, 2018, 39(3): 57 − 60. doi: 10.12073/j.hjxb.2018390068

    Zhang Yongyun, Wang Ting, Li Ning, et al. Weldability of PM-TZM alloy using electron beam welding[J]. Transactions of the China Welding Institution, 2018, 39(3): 57 − 60. doi: 10.12073/j.hjxb.2018390068
    Chen G, Liu J, Shu X, et al. Study on microstructure and performance of molybdenum joint welded by electron beam[J]. Vacuum, 2018, 154: 1 − 5. doi: 10.1016/j.vacuum.2018.04.031
    Wang T, Zhang Y, Jiang S, et al. Stress relief and purification mechanisms for grain boundaries of electron beam welded TZM alloy joint with zirconium addition[J]. Journal of Materials Processing Technology, 2018, 251: 168 − 174. doi: 10.1016/j.jmatprotec.2017.08.031
    Zhang Y, Wang T, Jiang S, et al. Effect of rhenium content on microstructures and mechanical properties of electron beam welded TZM alloy joints[J]. Journal of Manufacturing Processes, 2018, 32: 337 − 343. doi: 10.1016/j.jmapro.2018.03.008
    刘仁超. 氧化镧弥散强化钼合金电子束焊接接头组织及工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    Liu Renchao. Study on microstructure and technology of lanthanum oxide dispersion strengthened molybdenum alloy electron beam welding[D]. Harbin: Harbin Institute of Technology, 2020.
    Das K, Ghosh A, Bhattacharya A, et al. Effect of beam current on the microstructure, crystallographic texture and mechanical properties of electron beam welded high purity niobium[J]. Materials Characterization, 2021, 179: 111318. doi: 10.1016/j.matchar.2021.111318
    罗昌森, 罗宏, 曾宪光, 等. 铜钨合金与低碳钢的焊接组织与性能[J]. 稀有金属材料与工程, 2015, 44(9): 2322 − 2325.

    Luo Changsen, Luo Hong, Zeng Xianguang, et al. Microstructure and properties of welding joint of copper-tungsten alloy and low carbon steel[J]. Rare Metal Materials and Engineering, 2015, 44(9): 2322 − 2325.
    Chen G, Zhang G, Yin Q, et al. Investigation of cracks during electron beam welding of γ-TiAl based alloy[J]. Journal of Materials Processing Technology, 2020, 283: 116727. doi: 10.1016/j.jmatprotec.2020.116727
    Chen G, Zhang B, Liu W, et al. Crack formation and control upon the electron beam welding of TiAl-based alloys[J]. Intermetallics, 2011, 19(12): 1857 − 1863. doi: 10.1016/j.intermet.2011.07.017
    何景山, 张秉刚, 吴庆生, 等. 焊后热处理对Ti3Al电子束焊缝组织形态的影响[J]. 焊接学报, 2007, 28(5): 57 − 60. doi: 10.3321/j.issn:0253-360X.2007.05.015

    He Jingshan, Zhang Binggang, Wu Qingsheng, et al. Effect of postweld heat treatment on microstructure of electron beam welded joints of Ti3Al[J]. Transactions of the China Welding Institution, 2007, 28(5): 57 − 60. doi: 10.3321/j.issn:0253-360X.2007.05.015
    Li Y, Wang H, Han K, et al. Microstructure of Ti-45Al-8.5Nb-0.2W-0.03Y electron beam welding joints[J]. Journal of Materials Processing Technology, 2017, 250: 401 − 409. doi: 10.1016/j.jmatprotec.2017.07.004
    Li Y, Wu A, Li Q, et al. Mechanism of reheat cracking in electron beam welded Ti2AlNb alloys[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(9): 1873 − 1881. doi: 10.1016/S1003-6326(19)65095-8
    张骞, 毛智勇, 李立航, 等. 扫描预热对Ti2AlNb电子束接头组织及拉伸性能影响[J]. 材料热处理学报, 2021, 42(7): 186 − 196.

    Zhang Qian, Mao Zhiyong, Li Lihang, et al. Effect of scanning preheating on microstructure and tensile properties of Ti2AlNb electron beam welding joints[J]. Ansactions of Materialsand Heat Treatment, 2021, 42(7): 186 − 196.
    Kharitonov I A, Dragunov V K, Goncharov A L, et al. Electron beam welding features of cermet membranes[J]. Journal of physics. Conference Series, 2018, 1109(1): 12022.
    王廷, 石志远, 李宁, 等. Cu46Zr46Al8非晶合金电子束焊接特性分析[J]. 焊接学报, 2018, 39(8): 38 − 41. doi: 10.12073/j.hjxb.2018390197

    Wang Ting, Shi Zhiyuan, Li Ning, et al. Characteristic of electron beam welded Cu46Zr46Al8 BMGs[J]. Transactions of the China Welding Institution, 2018, 39(8): 38 − 41. doi: 10.12073/j.hjxb.2018390197
    冯道臣, 郑文健, 高国奔, 等. AlCoCrFeNi2.1高熵合金电子束焊接接头耐蚀性[J]. 焊接学报, 2022, 43(5): 43 − 48. doi: 10.12073/j.hjxb.20220101006

    Feng Daochen, Zheng Wenjian, Gao Guoben, et al. Corrosion resistance of AlCoCrFeNi2.1 high entropy alloy welded joint by electron beam welding[J]. Transactions of the China Welding Institution, 2022, 43(5): 43 − 48. doi: 10.12073/j.hjxb.20220101006
    Chen G, Yin Q, Xi S, et al. Microstructure and properties of electron beam welded joints of tantalum and tungsten[J]. Welding in the World, 2018, 62: 775 − 782. doi: 10.1007/s40194-018-0600-z
    Wang T, Zhang B, Chen G, et al. High strength electron beam welded titanium–stainless steel joint with V/Cu based composite filler metals[J]. Vacuum, 2013, 94: 41 − 47. doi: 10.1016/j.vacuum.2013.01.015
    Guo S, Zhou Q, Peng Y, et al. Study on strengthening mechanism of Ti/Cu electron beam welding[J]. Materials & Design, 2017, 121: 51 − 60.
    王廷, 张秉刚, 冯吉才, 等. 钢侧偏束电子束焊接纯铝/Q235异种金属接头试验[J]. 焊接学报, 2014, 35(6): 69 − 72.

    Wang Ting, Zhang Binggang, Feng Jicai, et al. Experimental study of electron beam welded pure aluminium to Q235 steel joint with beam deflection[J]. Transactions of the China Welding Institution, 2014, 35(6): 69 − 72.
    Zhang B, Chen G, Zhang C, et al. Structure and mechanical properties of aluminum alloy/Ag interlayer/steel non-centered electron beam welded joints[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(12): 2592 − 2596. doi: 10.1016/S1003-6326(11)61096-0
    Wang T, Wang Y, Zhang Y, et al. Influence of an AlSi5 filler wire on microstructures and mechanical properties of EBW-brazed CP-Al to 304SS joint[J]. Journal of Manufacturing Processes, 2020, 56: 12 − 18. doi: 10.1016/j.jmapro.2020.04.060
    Zhang F, Wang T, Jiang S, et al. Microstructural characteristics and mechanical properties of an electron beam-welded Ti/Cu/Ni joint[J]. Journal of Materials Engineering and Performance, 2018, 27(5): 2354 − 2363. doi: 10.1007/s11665-018-3325-7
    Song D, Wang T, Jiang S, et al. Influence of welding parameters on microstructure and mechanical properties of electron beam welded Ti60 to GH3128 joint with a Cu interlayer[J]. Chinese Journal of Aeronautics, 2021, 34(5): 39 − 46. doi: 10.1016/j.cja.2020.08.016
    Zhang G, Chen G, Cao H, et al. Electron beam offset welding to ameliorate metallurgical compatibility and mechanical performance of refractory metal/Ni-base superalloy dissimilar alloys: Nb/GH3128[J]. Materials Science and Engineering:A, 2022, 840: 142966. doi: 10.1016/j.msea.2022.142966
    Kar J, Roy S K, Roy G G. Effect of beam oscillation on electron beam welding of copper with AISI-304 stainless steel[J]. Journal of Materials Processing Technology, 2016, 233: 174 − 185. doi: 10.1016/j.jmatprotec.2016.03.001
    Kar J, Dinda S K, Roy G G, et al. X-ray tomography study on porosity in electron beam welded dissimilar copper-304SS joints[J]. Vacuum, 2018, 149: 200 − 206. doi: 10.1016/j.vacuum.2017.12.038
    Dinda S K, Kar J, Roy G G, et al. Texture mapping in electron beam welded dissimilar copper-stainless steel joints by neutron diffraction[J]. Vacuum, 2020, 181: 109668. doi: 10.1016/j.vacuum.2020.109668
    Guo S, Zhou Q, Kong J, et al. Effect of beam offset on the characteristics of copper/304stainless steel electron beam welding[J]. Vacuum, 2016, 128: 205 − 212. doi: 10.1016/j.vacuum.2016.03.034
    Zhang B, Zhao J, Li X, et al. Electron beam welding of 304 stainless steel to QCr0.8 copper alloy with copper filler wire[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(12): 4059 − 4066. doi: 10.1016/S1003-6326(14)63569-X
    Xu R, Li H, Hou Y, et al. Influencing mechanism of Al-Zn coating addition on interfacial microstructure and mechanical property of vacuum electron beam welded Mg/steel joint[J]. Vacuum, 2018, 158: 31 − 38. doi: 10.1016/j.vacuum.2018.09.026
  • Related Articles

    [1]LONG Weimin, QIAO Ruilin, QIN Jian, SONG Xiaoguo, LI Pengyuan, FAN Xigang, LIU Daijun. Research progress in dissimilar material brazing technology and applications[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240126001
    [2]GUO Linglan, ZHANG Honghao, ZHANG Xinquan, ZHU Limin, SHEN Daozhi. Research progress on ultrafast laser processing of two-dimensional materials[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(12): 97-105. DOI: 10.12073/j.hjxb.20230613007
    [3]ZHANG Tingting, ZHU Kaihang, XU Zhenbo, WANG Yan, AN Dongcai, ZHANG Timing. Research progress and perspective on bonding technologies of metal/CFRP materials and its interfacial bonding mechanism[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 44-54. DOI: 10.12073/j.hjxb.20220610001
    [4]CHANG Qing, ZHANG Lixia. Research progress on brazing of advanced functional materials[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 1-11. DOI: 10.12073/j.hjxb.20220819001
    [5]Jian QIN, Jiao YANG, Weimin LONG, Sujuan ZHONG, Pan LIU, Haozhe YANG. Research progress of additive technology of diamond and its composite materials[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 102-112. DOI: 10.12073/j.hjxb.20220508002
    [6]LIU Xiaochao, NI Zhonghua, CUI Yuanchi, WU Chuansong, SHI Lei, Hidetoshi Fujii. Advances in friction welding technology based on friction between workpiece and external consumable tool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(7): 14-27. DOI: 10.12073/j.hjxb.20211015003
    [7]CHEN Guoqing, YIN Qianxing, SI Xiaoqing, ZHANG Binggang. Research status analysis of aluminum-lithium alloy welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 155-160. DOI: 10.12073/j.hjxb.2019400225
    [8]FENG Jicai, WANG Ting, ZHANG Binggang, CHEN Guoqing. Research status analysis of electron beam welding for joining of dissimilar materials[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (10): 108-112.
    [9]LIANG Zhi-fang, LI Wu-shen, WANG Ying-na. Status and future development of nanometer coating prepared by thermal spraying[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (6): 94-96.
    [10]REN Zhen-an, ZHOU Zhen-feng, SUN Da-qian. Advance of Researches on the Cold Cracking of the Gray Cast Iron Cold-welding with Homogenous Welding Consumables[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (1): 91-96.

Catalog

    Article views (819) PDF downloads (117) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return