Citation: | Binggang ZHANG, Yifan WANG, Houqin WANG. Research status and development trend of electron beam welding for advanced materials and dissimilar materials[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 95-101. DOI: 10.12073/j.hjxb.20220506001 |
冯吉才. 异种材料连接研究进展综述[J]. 航空学报, 2022, 43(2): 6 − 42.
Feng Jicai. Research progress on dissimilar materials joining[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 6 − 42.
|
冯吉才, 王廷, 张秉刚, 等. 异种材料真空电子束焊接研究现状分析[J]. 焊接学报, 2009, 30(10): 108 − 112.
Feng Jicai, Wang Ting, Zhang Binggang, et al. Research status analysis of electron beam welding for joining of dissimilar materials[J]. Transactiongs of the China Welding Institution, 2009, 30(10): 108 − 112.
|
路志芳. 电子束焊接国内专利技术综述[J]. 现代制造技术与装备, 2019(5): 216 − 217. doi: 10.3969/j.issn.1673-5587.2019.05.110
Lu Zhifang. Overview of ratent technology of electron beam welding in China[J]. Modern Manufacturing Technology and Equipment, 2019(5): 216 − 217. doi: 10.3969/j.issn.1673-5587.2019.05.110
|
Cheng M, Yu B, Guo R, et al. Electron beam welding of a novel near α high temperature titanium alloy powder compact: effect of post-welding heat treatment on tensile properties[J]. Journal of Materials Research and Technology, 2021, 10: 153 − 163. doi: 10.1016/j.jmrt.2020.12.022
|
Fu P, Mao Z, Lin J, et al. Temperature field modeling and microstructure analysis of EBW with multi-beam for near α titanium alloy[J]. Vacuum, 2014, 102: 54 − 62. doi: 10.1016/j.vacuum.2013.11.002
|
Liu H, Song J, Cao X, et al. Enhancement of fatigue resistance by direct aging treatment in electron beam welded Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy joint[J]. Materials Science and Engineering:A, 2022, 829: 142168. doi: 10.1016/j.msea.2021.142168
|
Liu F, Chen Y, He C, et al. Very long life fatigue failure mechanism of electron beam welded joint for titanium alloy at elevated temperature[J]. International Journal of Fatigue, 2021, 152: 106446. doi: 10.1016/j.ijfatigue.2021.106446
|
Zhang S, Ma Y, Huang S, et al. Temperature-gradient induced microstructure evolution in heat-affected zone of electron beam welded Ti-6Al-4V titanium alloy[J]. Journal of Materials Science & Technology, 2019, 35(8): 1681 − 1690.
|
Zeng C, Zhang Y, Hu J, et al. The role of microstructure on corrosion fatigue behavior of thick-plate Ti-6Al-4V joint via vacuum electron beam welding[J]. Vacuum, 2020, 182: 109714. doi: 10.1016/j.vacuum.2020.109714
|
Lu Y, Turner R, Brooks J, et al. A study of process-induced grain structures during steady state and non-steady state electron-beam welding of a titanium alloy[J]. Journal of Materials Science & Technology, 2022, 113: 117 − 127.
|
刘武猛, 郭纯, 吴随松. 高温合金焊接研究现状及发展趋势[J]. 金属加工(热加工), 2022(1): 44 − 48.
Liu Wumeng, Guo Chun, Wu Suisong. Research status and development trend of superalloy welding[J]. Machinist Metal Forming, 2022(1): 44 − 48.
|
Han K, Wang H, Shen L, et al. Analysis of cracks in the electron beam welded joint of K465 nickel-base superalloy[J]. Vacuum, 2018, 157: 21 − 30. doi: 10.1016/j.vacuum.2018.08.011
|
Zhang Z, Wang S, Chen Y, et al. Microstructure and properties of 3D-GH3625 electron beam welded[J]. IOP Conference Series Materials Science and Engineering, 2018, 423(1): 12074.
|
Sun W, Wang S, Hong M, et al. Effect of heat input on microstructure and mechanical properties of IC10 Ni3Al-based superalloy electron beam welding joint[J]. Vacuum, 2020, 182: 109765. doi: 10.1016/j.vacuum.2020.109765
|
Taheri M, Kashani-Bozorg S F, Alizadeh A, et al. Analysis of liquation and solidification cracks in the electron beam welding of GTD-111 nickel-base superalloy joint[J]. Materials Research Express, 2021, 8(7): 76507. doi: 10.1088/2053-1591/ac1007
|
Cheng Y, Chen J, Shiue R, et al. The evolution of cast microstructures on the HAZ liquation cracking of Mar-M004 weld[J]. Metals (Basel ), 2018, 8(1): 35 − 48. doi: 10.3390/met8010035
|
Han K, Wang H, Peng F, et al. Investigation of microstructure and mechanical performance in IN738LC joint by vacuum electron beam welding[J]. Vacuum, 2019, 162: 214 − 227. doi: 10.1016/j.vacuum.2018.12.047
|
Chen J, Zhang P, Mo T, et al. Effect of TiC particles on ductility dip cracking susceptibility of Ni-base superalloy[J]. Science and Technology of Welding and Joining, 2021, 26(4): 294 − 300. doi: 10.1080/13621718.2021.1902609
|
Sonar T, Balasubramanian V, Malarvizhi S, et al. An overview on welding of Inconel 718 alloy—Effect of welding processes on microstructural evolution and mechanical properties of joints[J]. Materials Characterization, 2021, 174: 110997. doi: 10.1016/j.matchar.2021.110997
|
Han K, Wang H, Peng F, et al. Effect of thermal compensation treatment on the microstructure and mechanical properties of IN738LC joint by electron beam welding[J]. Journal of Manufacturing Processes, 2020, 58: 536 − 550. doi: 10.1016/j.jmapro.2020.08.024
|
Wen S, Liu Z, Mi D, et al. Revealing the fatigue crack propagation mechanism of a Ni-based superalloy electron beam welded joint through in-situ SEM observation[J]. International Journal of Fatigue, 2022, 162: 106955. doi: 10.1016/j.ijfatigue.2022.106955
|
Gupta R K, Anil Kumar V, Sukumaran A, et al. High-temperature tensile behaviors of base metal and electron beam-welded joints of Ni-20Cr-9Mo-4Nb superalloy[J]. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 2018, 49(7): 2654 − 2672. doi: 10.1007/s11661-018-4652-x
|
Keshavarz M K, Turenne S, Bonakdar A. Solidification behavior of inconel 713LC gas turbine blades during electron beam welding[J]. Journal of Manufacturing Processes, 2018, 31: 232 − 239. doi: 10.1016/j.jmapro.2017.11.021
|
张永赟, 王廷, 李宁, 等. PM-TZM钼合金电子束焊接特性[J]. 焊接学报, 2018, 39(3): 57 − 60. doi: 10.12073/j.hjxb.2018390068
Zhang Yongyun, Wang Ting, Li Ning, et al. Weldability of PM-TZM alloy using electron beam welding[J]. Transactions of the China Welding Institution, 2018, 39(3): 57 − 60. doi: 10.12073/j.hjxb.2018390068
|
Chen G, Liu J, Shu X, et al. Study on microstructure and performance of molybdenum joint welded by electron beam[J]. Vacuum, 2018, 154: 1 − 5. doi: 10.1016/j.vacuum.2018.04.031
|
Wang T, Zhang Y, Jiang S, et al. Stress relief and purification mechanisms for grain boundaries of electron beam welded TZM alloy joint with zirconium addition[J]. Journal of Materials Processing Technology, 2018, 251: 168 − 174. doi: 10.1016/j.jmatprotec.2017.08.031
|
Zhang Y, Wang T, Jiang S, et al. Effect of rhenium content on microstructures and mechanical properties of electron beam welded TZM alloy joints[J]. Journal of Manufacturing Processes, 2018, 32: 337 − 343. doi: 10.1016/j.jmapro.2018.03.008
|
刘仁超. 氧化镧弥散强化钼合金电子束焊接接头组织及工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
Liu Renchao. Study on microstructure and technology of lanthanum oxide dispersion strengthened molybdenum alloy electron beam welding[D]. Harbin: Harbin Institute of Technology, 2020.
|
Das K, Ghosh A, Bhattacharya A, et al. Effect of beam current on the microstructure, crystallographic texture and mechanical properties of electron beam welded high purity niobium[J]. Materials Characterization, 2021, 179: 111318. doi: 10.1016/j.matchar.2021.111318
|
罗昌森, 罗宏, 曾宪光, 等. 铜钨合金与低碳钢的焊接组织与性能[J]. 稀有金属材料与工程, 2015, 44(9): 2322 − 2325.
Luo Changsen, Luo Hong, Zeng Xianguang, et al. Microstructure and properties of welding joint of copper-tungsten alloy and low carbon steel[J]. Rare Metal Materials and Engineering, 2015, 44(9): 2322 − 2325.
|
Chen G, Zhang G, Yin Q, et al. Investigation of cracks during electron beam welding of γ-TiAl based alloy[J]. Journal of Materials Processing Technology, 2020, 283: 116727. doi: 10.1016/j.jmatprotec.2020.116727
|
Chen G, Zhang B, Liu W, et al. Crack formation and control upon the electron beam welding of TiAl-based alloys[J]. Intermetallics, 2011, 19(12): 1857 − 1863. doi: 10.1016/j.intermet.2011.07.017
|
何景山, 张秉刚, 吴庆生, 等. 焊后热处理对Ti3Al电子束焊缝组织形态的影响[J]. 焊接学报, 2007, 28(5): 57 − 60. doi: 10.3321/j.issn:0253-360X.2007.05.015
He Jingshan, Zhang Binggang, Wu Qingsheng, et al. Effect of postweld heat treatment on microstructure of electron beam welded joints of Ti3Al[J]. Transactions of the China Welding Institution, 2007, 28(5): 57 − 60. doi: 10.3321/j.issn:0253-360X.2007.05.015
|
Li Y, Wang H, Han K, et al. Microstructure of Ti-45Al-8.5Nb-0.2W-0.03Y electron beam welding joints[J]. Journal of Materials Processing Technology, 2017, 250: 401 − 409. doi: 10.1016/j.jmatprotec.2017.07.004
|
Li Y, Wu A, Li Q, et al. Mechanism of reheat cracking in electron beam welded Ti2AlNb alloys[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(9): 1873 − 1881. doi: 10.1016/S1003-6326(19)65095-8
|
张骞, 毛智勇, 李立航, 等. 扫描预热对Ti2AlNb电子束接头组织及拉伸性能影响[J]. 材料热处理学报, 2021, 42(7): 186 − 196.
Zhang Qian, Mao Zhiyong, Li Lihang, et al. Effect of scanning preheating on microstructure and tensile properties of Ti2AlNb electron beam welding joints[J]. Ansactions of Materialsand Heat Treatment, 2021, 42(7): 186 − 196.
|
Kharitonov I A, Dragunov V K, Goncharov A L, et al. Electron beam welding features of cermet membranes[J]. Journal of physics. Conference Series, 2018, 1109(1): 12022.
|
王廷, 石志远, 李宁, 等. Cu46Zr46Al8非晶合金电子束焊接特性分析[J]. 焊接学报, 2018, 39(8): 38 − 41. doi: 10.12073/j.hjxb.2018390197
Wang Ting, Shi Zhiyuan, Li Ning, et al. Characteristic of electron beam welded Cu46Zr46Al8 BMGs[J]. Transactions of the China Welding Institution, 2018, 39(8): 38 − 41. doi: 10.12073/j.hjxb.2018390197
|
冯道臣, 郑文健, 高国奔, 等. AlCoCrFeNi2.1高熵合金电子束焊接接头耐蚀性[J]. 焊接学报, 2022, 43(5): 43 − 48. doi: 10.12073/j.hjxb.20220101006
Feng Daochen, Zheng Wenjian, Gao Guoben, et al. Corrosion resistance of AlCoCrFeNi2.1 high entropy alloy welded joint by electron beam welding[J]. Transactions of the China Welding Institution, 2022, 43(5): 43 − 48. doi: 10.12073/j.hjxb.20220101006
|
Chen G, Yin Q, Xi S, et al. Microstructure and properties of electron beam welded joints of tantalum and tungsten[J]. Welding in the World, 2018, 62: 775 − 782. doi: 10.1007/s40194-018-0600-z
|
Wang T, Zhang B, Chen G, et al. High strength electron beam welded titanium–stainless steel joint with V/Cu based composite filler metals[J]. Vacuum, 2013, 94: 41 − 47. doi: 10.1016/j.vacuum.2013.01.015
|
Guo S, Zhou Q, Peng Y, et al. Study on strengthening mechanism of Ti/Cu electron beam welding[J]. Materials & Design, 2017, 121: 51 − 60.
|
王廷, 张秉刚, 冯吉才, 等. 钢侧偏束电子束焊接纯铝/Q235异种金属接头试验[J]. 焊接学报, 2014, 35(6): 69 − 72.
Wang Ting, Zhang Binggang, Feng Jicai, et al. Experimental study of electron beam welded pure aluminium to Q235 steel joint with beam deflection[J]. Transactions of the China Welding Institution, 2014, 35(6): 69 − 72.
|
Zhang B, Chen G, Zhang C, et al. Structure and mechanical properties of aluminum alloy/Ag interlayer/steel non-centered electron beam welded joints[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(12): 2592 − 2596. doi: 10.1016/S1003-6326(11)61096-0
|
Wang T, Wang Y, Zhang Y, et al. Influence of an AlSi5 filler wire on microstructures and mechanical properties of EBW-brazed CP-Al to 304SS joint[J]. Journal of Manufacturing Processes, 2020, 56: 12 − 18. doi: 10.1016/j.jmapro.2020.04.060
|
Zhang F, Wang T, Jiang S, et al. Microstructural characteristics and mechanical properties of an electron beam-welded Ti/Cu/Ni joint[J]. Journal of Materials Engineering and Performance, 2018, 27(5): 2354 − 2363. doi: 10.1007/s11665-018-3325-7
|
Song D, Wang T, Jiang S, et al. Influence of welding parameters on microstructure and mechanical properties of electron beam welded Ti60 to GH3128 joint with a Cu interlayer[J]. Chinese Journal of Aeronautics, 2021, 34(5): 39 − 46. doi: 10.1016/j.cja.2020.08.016
|
Zhang G, Chen G, Cao H, et al. Electron beam offset welding to ameliorate metallurgical compatibility and mechanical performance of refractory metal/Ni-base superalloy dissimilar alloys: Nb/GH3128[J]. Materials Science and Engineering:A, 2022, 840: 142966. doi: 10.1016/j.msea.2022.142966
|
Kar J, Roy S K, Roy G G. Effect of beam oscillation on electron beam welding of copper with AISI-304 stainless steel[J]. Journal of Materials Processing Technology, 2016, 233: 174 − 185. doi: 10.1016/j.jmatprotec.2016.03.001
|
Kar J, Dinda S K, Roy G G, et al. X-ray tomography study on porosity in electron beam welded dissimilar copper-304SS joints[J]. Vacuum, 2018, 149: 200 − 206. doi: 10.1016/j.vacuum.2017.12.038
|
Dinda S K, Kar J, Roy G G, et al. Texture mapping in electron beam welded dissimilar copper-stainless steel joints by neutron diffraction[J]. Vacuum, 2020, 181: 109668. doi: 10.1016/j.vacuum.2020.109668
|
Guo S, Zhou Q, Kong J, et al. Effect of beam offset on the characteristics of copper/304stainless steel electron beam welding[J]. Vacuum, 2016, 128: 205 − 212. doi: 10.1016/j.vacuum.2016.03.034
|
Zhang B, Zhao J, Li X, et al. Electron beam welding of 304 stainless steel to QCr0.8 copper alloy with copper filler wire[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(12): 4059 − 4066. doi: 10.1016/S1003-6326(14)63569-X
|
Xu R, Li H, Hou Y, et al. Influencing mechanism of Al-Zn coating addition on interfacial microstructure and mechanical property of vacuum electron beam welded Mg/steel joint[J]. Vacuum, 2018, 158: 31 − 38. doi: 10.1016/j.vacuum.2018.09.026
|
[1] | LONG Weimin, QIAO Ruilin, QIN Jian, SONG Xiaoguo, LI Pengyuan, FAN Xigang, LIU Daijun. Research progress in dissimilar material brazing technology and applications[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240126001 |
[2] | GUO Linglan, ZHANG Honghao, ZHANG Xinquan, ZHU Limin, SHEN Daozhi. Research progress on ultrafast laser processing of two-dimensional materials[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(12): 97-105. DOI: 10.12073/j.hjxb.20230613007 |
[3] | ZHANG Tingting, ZHU Kaihang, XU Zhenbo, WANG Yan, AN Dongcai, ZHANG Timing. Research progress and perspective on bonding technologies of metal/CFRP materials and its interfacial bonding mechanism[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 44-54. DOI: 10.12073/j.hjxb.20220610001 |
[4] | CHANG Qing, ZHANG Lixia. Research progress on brazing of advanced functional materials[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 1-11. DOI: 10.12073/j.hjxb.20220819001 |
[5] | Jian QIN, Jiao YANG, Weimin LONG, Sujuan ZHONG, Pan LIU, Haozhe YANG. Research progress of additive technology of diamond and its composite materials[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 102-112. DOI: 10.12073/j.hjxb.20220508002 |
[6] | LIU Xiaochao, NI Zhonghua, CUI Yuanchi, WU Chuansong, SHI Lei, Hidetoshi Fujii. Advances in friction welding technology based on friction between workpiece and external consumable tool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(7): 14-27. DOI: 10.12073/j.hjxb.20211015003 |
[7] | CHEN Guoqing, YIN Qianxing, SI Xiaoqing, ZHANG Binggang. Research status analysis of aluminum-lithium alloy welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 155-160. DOI: 10.12073/j.hjxb.2019400225 |
[8] | FENG Jicai, WANG Ting, ZHANG Binggang, CHEN Guoqing. Research status analysis of electron beam welding for joining of dissimilar materials[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (10): 108-112. |
[9] | LIANG Zhi-fang, LI Wu-shen, WANG Ying-na. Status and future development of nanometer coating prepared by thermal spraying[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (6): 94-96. |
[10] | REN Zhen-an, ZHOU Zhen-feng, SUN Da-qian. Advance of Researches on the Cold Cracking of the Gray Cast Iron Cold-welding with Homogenous Welding Consumables[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (1): 91-96. |