Advanced Search
WANG Feifan, XIE Yuming, WU Huiqiang, MA Fei, HUANG Yongxian. Mechanical performances and corrosion behaviors of friction stir welded and TIG welded 2219 aluminum alloy joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(6): 43-49. DOI: 10.12073/j.hjxb.20220103001
Citation: WANG Feifan, XIE Yuming, WU Huiqiang, MA Fei, HUANG Yongxian. Mechanical performances and corrosion behaviors of friction stir welded and TIG welded 2219 aluminum alloy joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(6): 43-49. DOI: 10.12073/j.hjxb.20220103001

Mechanical performances and corrosion behaviors of friction stir welded and TIG welded 2219 aluminum alloy joints

More Information
  • Received Date: January 02, 2022
  • Available Online: May 29, 2022
  • Mechanical performances of friction stir welding (FSW) and tungsten inert gas (TIG) welded 2219-CS aluminum alloy joints were evaluated. The macro and micro zone corrosion behaviors were characterized by intergranular corrosion, exfoliation corrosion, and electrochemical corrosion. The morphologies of corroded surfaces were analyzed with the help of optical microscopy and scanning electron microscopy. The results showed that the fine-grain microstructures and homogeneous redispersed precipitates in the weld nugget zone of friction stir welded joints greatly improved their corrosion resistance. The anti-corrosion performances of the heat affected zone of friction stir welded joints were also better than those of the fusion welded joints, which were attributed to the less re-dissolving and coarsening of the precipitates. The higher electrochemical homogeneity of the friction stir welded joints contributed to the significantly reduction in corrosion rate.
  • 刘观日, 吴迪, 姚重阳, 等. 航天运载器结构先进材料及工艺技术应用与发展展望[J]. 宇航材料工艺, 2021, 51(4): 1 − 9.

    Liu Guanri, Wu Di, Yao Chongyang, et al. Application and development of advanced material and process technology in aerospace vehicle structure[J]. Aerospace Materials and Technology, 2021, 51(4): 1 − 9.
    康举, 梁苏莹, 吴爱萍, 等. 2219铝合金搅拌摩擦焊中的局部液化现象及对接头力学性能的影响[J]. 金属学报, 2017, 53(3): 358 − 368.

    Kang Ju, Liang Suying, Wu Aiping, et al. Local liquation phenomenon and its effect on mechanical properties of joint in friction stir welded 2219 Al alloy[J]. Acta Metallurgica Sinica, 2017, 53(3): 358 − 368.
    周政, 王国庆, 宋建岭, 等. 2219铝合金不同气氛下TIG焊焊接接头组织性能[J]. 焊接学报, 2018, 39(7): 47 − 50.

    Zhou Zheng, Wang Guoqing, Song Jianling, et al. Microstructure and mechanical properties of 2219 aluminum alloys TIG welding welded joints in different shielding gases[J]. Transactions of the China Welding Institution, 2018, 39(7): 47 − 50.
    Dkz A, Apwab C, Yue Z, et al. Microstructural evolution and its effect on mechanical properties in different regions of 2219-C10S aluminum alloy TIG-welded joint-science direct[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(10): 2625 − 2638. doi: 10.1016/S1003-6326(20)65407-3
    张满当, 赵运强, 董春林, 等. 铝锂合金机器人搅拌摩擦焊接头组织和性能[J]. 焊接学报, 2021, 42(5): 71 − 76. doi: 10.12073/j.hjxb.20201120002

    Zhang Mandang, Zhao Yunqiang, Dong Chunlin, et al. Structure and properties of friction stir welding joint of Al-Li alloy[J]. Transactions of the China Welding Institution, 2021, 42(5): 71 − 76. doi: 10.12073/j.hjxb.20201120002
    Meng X, Huang Y, Cao J, et al. Recent progress on control strategies for inherent issues in friction stir welding[J]. Progress in Materials Science, 2021, 115: 100706. doi: 10.1016/j.pmatsci.2020.100706
    Hu Y, Liu H, Du S. Achievement of high-strength 2219 aluminum alloy joint in a broad process window by ultrasonic enhanced friction stir welding[J]. Materials Science & Engineering A, 2021, 804: 140587.
    Wei F X, Jin H L. Microstructure and pitting corrosion of friction stir welded joints in 2219-O aluminum alloy thick plate[J]. Corrosion Science, 2009, 51(11): 2743 − 2751. doi: 10.1016/j.corsci.2009.07.004
    张华, 孙大同, 张贺, 等. 2219铝合金搅拌摩擦焊接头腐蚀行为[J]. 焊接学报, 2014, 35(7): 39 − 42.

    Zhang Hua, Sun Datong, Zhang He, et al. Corrosion behavior of friction stir welded 2219 aluminum alloy[J]. Transactions of the China Welding Institution, 2014, 35(7): 39 − 42.
    梁苏莹. 2219铝合金搅拌摩擦焊接头在中性介质中的腐蚀行为[J]. 腐蚀与防护, 2017, 38(3): 208 − 213.

    Liang Suying. Corrosion behavior of friction stir welded joints of 2219 Al alloy in neutral chloride solution[J]. Corrosion & Protection, 2017, 38(3): 208 − 213.
    何跃, 郑玉贵, 国旭明. 高强Al-Cu合金2219及其熔敷金属的点蚀行为研究[J]. 腐蚀科学与防护技术, 2005(6): 16 − 20.

    He Yue, Zheng Yugui, Guo Xuming. Pitting corrosion of high strength Al-Cu alloy 2219 and its overlayers[J]. Corrosion Science and Protection Technology, 2005(6): 16 − 20.
    章淑芳, 郝云飞, 王晓敏, 等. 2219铝合金焊接接头晶间腐蚀行为[J]. 焊接学报, 2017, 38(4): 22 − 26.

    Zhang Shufang, Hao Yunfei, Wang Xiaomin, et al. Intergranular corrosion behavior of 2219 aluminum alloys welding joint[J]. Transactions of the China Welding Institution, 2017, 38(4): 22 − 26.
  • Related Articles

    [1]YANG Tao, WANG Yuan, ZHUANG Yuan, YANG Ruixin, ZENG Junyan, LI Huanyu. Weakening mechanism of 301L stainless steel welded joints by the laser arc hybrid heat source mode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 56-61. DOI: 10.12073/j.hjxb.20211202006
    [2]LI Zeyu, XU Lianyong, HAO Kangda, ZHAO Lei, JING Hongyang. Microstructure and properties of MAG and oscillating laser arc hybrid welded X80 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 36-42. DOI: 10.12073/j.hjxb.20220101002
    [3]CHEN Genyu, ZHANG Yan, LEI Ran. Testing of hot crack using laser-MAG combined welding for 42CrMo steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 61-66. DOI: 10.12073/j.hjxb.2019400182
    [4]YANG Tao, HE Shuang, CHEN Yong, TIAN Honglei, CHEN Hui. Arc characteristics and weld formation during laser-pulsed MAG hybrid arc welding of 304L stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(7): 65-69.
    [5]FAN Chenglei, XIE Weifeng, YANG Chunli, ZHUANG Xiaowei, LIN Sanbao. Effect of CO2 content for droplet transfer in ultrasound-MAG hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(3): 18-22.
    [6]ZHU Yanli, LI Huan, YANG Lijun, GAO Ying. Development of hybrid laser+double wire MIG/MAG welding system and process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (12): 28-32.
    [7]WU Yanming, WANG Wei, LIN Shangyang, WANG Xuyou. Analysis of droplet behavior in Nd:YAG laser-pulsed MAG hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (7): 83-86,112.
    [8]LI Zhiyong, WANG Wei, WANG Xuyou, LI Huan. Analysis of laser-MAG hybrid welding plasma radiation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (3): 21-24,28.
    [9]KANG Le, HUANG Ruisheng, LIU Liming, LIU Jinghe. Low-power YAG laser-MAG arc hybrid welding of stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (11): 69-72.
    [10]WANG Wei, WANG Xu-you, ZHAO Zi-liang, LENG Kai-bo, BU Da-chuan. Influential factors in laser-MAG hybrid welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (2): 6-10.

Catalog

    Article views (350) PDF downloads (61) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return