Advanced Search
SHU Fengyuan, NIU Sicheng, HE Peng, SUI Shaohua, ZHANG Xiaodong. Research progress of high-entropy amorphous materials and their additive manufacturing technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 1-8. DOI: 10.12073/j.hjxb.20201203001
Citation: SHU Fengyuan, NIU Sicheng, HE Peng, SUI Shaohua, ZHANG Xiaodong. Research progress of high-entropy amorphous materials and their additive manufacturing technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 1-8. DOI: 10.12073/j.hjxb.20201203001

Research progress of high-entropy amorphous materials and their additive manufacturing technology

More Information
  • Received Date: December 02, 2020
  • Available Online: December 01, 2021
  • High-entropy amorphous alloys (HEAAs) exhibit unique physical, chemical and mechanical properties as well as better thermal stability. Thus, its fabrication technology has become one of the important research hotspots at home and abroad. However, high-entropy amorphous materials manufactured by traditional technology had defects such as coarse crystal grains and material waste, which was difficult to meet the needs of processing production. The precise manufacturing and rapid cooling of additive manufacturing technology could solve the problems, and produce high entropy amorphous alloys with superior properties. This review research briefly introduced the research system and common preparation methods of high-entropy amorphous materials. It mainly focused on the research about fracture strength, corrosion resistance and thermal stability of high-entropy amorphous materials. The process features and advantages of additive manufacturing technology, and the scientific difficulties for applying this technology to fabricate high-entropy amorphous alloys were summarized. The results showed that additive manufacturing technology contributed to high-entropy amorphous materials with dense and uniform microstructures, while the explanation for the formation of amorphous phases was limited to the four effects of high-entropy alloys, Finally, a discussion with two additive manufacturing methods commonly used in the fabrication of high-entropy amorphous materials in recent years was made. Furthermore, the prospects for the development trend of fabricating high-entropy amorphous materials by additive manufacturing technology were put forward.
  • Wang W. High-entropy metallic glasses[J]. Jom, 2014, 66(10): 2067 − 2077. doi: 10.1007/s11837-014-1002-3
    Xie L, Xiong X, Zeng Y, et al. The wear properties and mechanism of detonation sprayed iron-based amorphous coating[J]. Surface and Coatings Technology, 2019, 366: 146 − 155. doi: 10.1016/j.surfcoat.2019.03.028
    Yeh J W, Chen Y L, Lin S J, et al. High-entropy alloys-A new era of exploitation[J]. Materials Science Forum, 2007, 560: 1 − 9.
    Guo S, Hu Q, Ng C, et al. More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase[J]. Intermetallics, 2013, 41: 96 − 103. doi: 10.1016/j.intermet.2013.05.002
    Yuan Z, Tian W, Li F, et al. Microstructure and properties of high-entropy alloy reinforced aluminum matrix composites by spark plasma sintering[J]. Journal of Alloys and Compounds, 2019, 806: 901 − 908. doi: 10.1016/j.jallcom.2019.07.185
    Zhou K, Sun B, Liu G, et al. FeCoNiAlSi high entropy alloys with exceptional fundamental and application-oriented magnetism[J]. Intermetallics, 2020, 122: 106801. doi: 10.1016/j.intermet.2020.106801
    Li H, Xie X, Zhao K, et al. In vitro and in vivo studies on biodegradable CaMgZnSrYb high-entropy bulk metallic glass[J]. Acta Biomaterialia, 2013, 9(10): 8561 − 8573. doi: 10.1016/j.actbio.2013.01.029
    Butler T M, Weaver M L. Oxidation behavior of arc melted AlCoCrFeNi multi-component high-entropy alloys[J]. Journal of Alloys and Compounds, 2016, 674: 229 − 244. doi: 10.1016/j.jallcom.2016.02.257
    Nagase T, Mizuuchi K, Nakano T. Solidification microstructures of the ingots obtained by arc melting and cold crucible levitation melting in TiNbTaZr medium-entropy alloy and TiNbTaZrX (X= V, Mo, W) high-entropy alloys[J]. Entropy, 2019, 21(5): 483. doi: 10.3390/e21050483
    Zhang P, Li Y, Chen Z, et al. Oxidation response of a vacuum arc melted NbZrTiCrAl refractory high entropy alloy at 800–1 200 ℃[J]. Vacuum, 2019, 162: 20 − 27. doi: 10.1016/j.vacuum.2019.01.026
    Hou L, Hui J, Yao Y, et al. Effects of boron content on microstructure and mechanical properties of AlFeCoNiBx high entropy alloy prepared by vacuum arc melting[J]. Vacuum, 2019, 164: 212 − 218.
    Wang H, Zhu Z, Chen H, et al. Effect of cyclic rapid thermal loadings on the microstructural evolution of a CrMnFeCoNi high-entropy alloy manufactured by selective laser melting[J]. Acta Materialia, 2020, 196: 609 − 625. doi: 10.1016/j.actamat.2020.07.006
    Wang Q, Amar A, Jiang C, et al. CoCrFeNiMo0.2 high entropy alloy by laser melting deposition: prospective material for low temperature and corrosion resistant applications[J]. Intermetallics, 2020, 119: 106727. doi: 10.1016/j.intermet.2020.106727
    Qiu X, Liu C. Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding[J]. Journal of Alloys and Compounds, 2013, 553: 216 − 220. doi: 10.1016/j.jallcom.2012.11.100
    Yue T, Xie H, Lin X, et al. Solidification behaviour in laser cladding of AlCoCrCuFeNi high-entropy alloy on magnesium substrates[J]. Journal of Alloys and Compounds, 2014, 587: 588 − 593. doi: 10.1016/j.jallcom.2013.10.254
    Fu Z, Chen W, Fang S, et al. Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering[J]. Journal of Alloys and Compounds, 2013, 553: 316 − 323. doi: 10.1016/j.jallcom.2012.11.146
    Chen Z, Chen W, Wu B, et al. Effects of Co and Ti on microstructure and mechanical behavior of Al0.75FeNiCrCo high entropy alloy prepared by mechanical alloying and spark plasma sintering[J]. Materials Science and Engineering:A, 2015, 648: 217 − 224. doi: 10.1016/j.msea.2015.08.056
    Kang B, Lee J, Ryu H J, et al. Ultra-high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process[J]. Materials Science and Engineering:A, 2018, 712: 616 − 624. doi: 10.1016/j.msea.2017.12.021
    Rane K, Strano M. A comprehensive review of extrusion-based additive manufacturing processes for rapid production of metallic and ceramic parts[J]. Advances in Manufacturing, 2019, 7(2): 155 − 173. doi: 10.1007/s40436-019-00253-6
    王磊磊, 张占辉, 徐得伟, 等. 双脉冲电弧增材制造数值模拟与晶粒细化机理[J]. 焊接学报, 2019, 40(4): 137 − 140,147. doi: 10.12073/j.hjxb.2019400114

    Wang Leilei, Zhang Zhanhui, Xu Dewei, et al. Numerical simulation and mechanism study of grain refinement during double pulsed wire arc additive manufacturing[J]. Transactions of the China Welding Institution, 2019, 40(4): 137 − 140,147. doi: 10.12073/j.hjxb.2019400114
    Mendoza M Y, Samimi P, Brice D A, et al. Microstructures and grain refinement of additive-manufactured Ti-xW alloys[J]. Metallurgical and Materials Transactions A, 2017, 48(7): 3594 − 3605. doi: 10.1007/s11661-017-4117-7
    Bermingham M, Stjohn D, Krynen J, et al. Promoting the columnar to equiaxed transition and grain refinement of titanium alloys during additive manufacturing[J]. Acta Materialia, 2019, 168: 261 − 274. doi: 10.1016/j.actamat.2019.02.020
    Ma L, Wang L, Zhang T, et al. Bulk glass formation of Ti-Zr-Hf-Cu-M (M=Fe, Co, Ni) alloys[J]. Materials Transactions, 2002, 43(2): 277 − 280. doi: 10.2320/matertrans.43.277
    Peker A, Johnson W L. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5[J]. Applied Physics Letters, 1993, 63(17): 2342 − 2344. doi: 10.1063/1.110520
    Gao X, Zhao K, Ke H, et al. High mixing entropy bulk metallic glasses[J]. Journal of Non-Crystalline Solids, 2011, 357(21): 3557 − 3560. doi: 10.1016/j.jnoncrysol.2011.07.016
    Takeuchi A, Chen N, Wada T, et al. Pd20Pt20Cu20Ni20P20 high-entropy alloy as a bulk metallic glass in the centimeter[J]. Intermetallics, 2011, 19(10): 1546 − 1554. doi: 10.1016/j.intermet.2011.05.030
    Wang J, Zheng Z, Xu J, et al. Microstructure and magnetic properties of mechanically alloyed FeSiBAlNi (Nb) high entropy alloys[J]. Journal of Magnetism and Magnetic Materials, 2014, 355: 58 − 64. doi: 10.1016/j.jmmm.2013.11.049
    Ding H Y, Yao K F. High entropy Ti20Zr20Cu20Ni20Be20 bulk metallic glass[J]. Journal of Non-Crystalline Solids, 2013, 364: 9 − 12. doi: 10.1016/j.jnoncrysol.2013.01.022
    Qi T, Li Y, Takeuchi A, et al. Soft magnetic Fe25Co25Ni25(B, Si)25 high entropy bulk metallic glasses[J]. Intermetallics, 2015, 66: 8 − 12. doi: 10.1016/j.intermet.2015.06.015
    Kim J, Oh H S, Kim J, et al. Utilization of high entropy alloy characteristics in Er-Gd-Y-Al-Co high entropy bulk metallic glass[J]. Acta Materialia, 2018, 155: 350 − 361. doi: 10.1016/j.actamat.2018.06.024
    Wu K, Liu C, Li Q, et al. Magnetocaloric effect of Fe25Co25Ni25Mo5P10B10 high-entropy bulk metallic glass[J]. Journal of Magnetism and Magnetic Materials, 2019, 489: 165404. doi: 10.1016/j.jmmm.2019.165404
    Li C, Li Q, Li M, et al. New ferromagnetic (Fe1/3Co1/3Ni1/3)80(P1/2B1/2)20 high entropy bulk metallic glass with superior magnetic and mechanical properties[J]. Journal of Alloys and Compounds, 2019, 791: 947 − 951. doi: 10.1016/j.jallcom.2019.03.375
    Hou X, Du D, Chang B, et al. Influence of scanning speed on microstructure and properties of laser cladded Fe-based amorphous coatings[J]. Materials, 2019, 12(8): 1279. doi: 10.3390/ma12081279
    Zhao K, Xia X, Bai H, et al. Room temperature homogeneous flow in a bulk metallic glass with low glass transition temperature[J]. Applied Physics Letters, 2011, 98(14): 141913. doi: 10.1063/1.3575562
    陶娟. FeCoNi 基软磁高熵非晶合金及其相应的高熵合金的性能研究[D]. 郑州: 郑州大学, 2017.

    Tao Juan. Research on the properties of FeCoNi-based soft magnetic high-entropy amorphous alloy and its corresponding high-entropy alloy[D]. Zhengzhou: Zhengzhou University , 2017.
    Wang Y, Xie X, Li H, et al. Biodegradable CaMgZn bulk metallic glass for potential skeletal application[J]. Acta Biomaterialia, 2011, 7(8): 3196 − 3208. doi: 10.1016/j.actbio.2011.04.027
    Ding J, Inoue A, Han Y, et al. High entropy effect on structure and properties of (Fe, Co, Ni, Cr)-B amorphous alloys[J]. Journal of Alloys and Compounds, 2017, 696: 345 − 352. doi: 10.1016/j.jallcom.2016.11.223
    Wang H, Liu L, Dou Y, et al. Preparation and corrosion resistance of electroless Ni-P/SiC functionally gradient coatings on AZ91D magnesium alloy[J]. Applied Surface Science, 2013, 286: 319 − 327. doi: 10.1016/j.apsusc.2013.09.079
    Yang H, Gao Y, Qin W, et al. Microstructure and corrosion behavior of electroless Ni-P on sprayed Al-Ce coating of 3003 aluminum alloy[J]. Surface and Coatings Technology, 2015, 281: 176 − 183. doi: 10.1016/j.surfcoat.2015.10.001
    Inoue A, Takeuchi A. Recent development and application products of bulk glassy alloys[J]. Acta Materialia, 2011, 59(6): 2243 − 2267. doi: 10.1016/j.actamat.2010.11.027
    Lucas M S, Mauger L, Muñoz J A, et al. Magnetic and vibrational properties of high-entropy alloys[J]. Journal of Applied Physics, 2011, 109(7): 07E307. doi: 10.1063/1.3538936
    Silveyra J M, Ferrara E, Huber D L, et al. Soft magnetic materials for a sustainable and electrified world[J]. Science, 2018, 362(6413): 1 − 9.
    Huo J, Huo L, Li J, et al. High-entropy bulk metallic glasses as promising magnetic refrigerants[J]. Journal of Applied Physics, 2015, 117(7): 073902. doi: 10.1063/1.4908286
    Huo J, Huo L, Men H, et al. The magnetocaloric effect of Gd-Tb-Dy-Al-M (M=Fe,Coand Ni) high-entropy bulk metallic glasses[J]. Intermetallics, 2015, 58: 31 − 35. doi: 10.1016/j.intermet.2014.11.004
    Belyea D D, Lucas M, Michel E, et al. Tunable magnetocaloric effect in transition metal alloys[J]. Scientific Reports, 2015, 5(1): 1 − 8. doi: 10.9734/JSRR/2015/14076
    Satake M, Bitoh T. Synthesis of Fe-Co-Ni-(B, Si, C) ferromagnetic high entropy amorphous alloys and their thermal and magnetic properties[J]. Journal of the Japan Society of Powder and Powder Metallurgy, 2018, 65(7): 401 − 406. doi: 10.2497/jjspm.65.401
    George E P, Raabe D, Ritchie R O. High-entropy alloys[J]. Nature Reviews Materials, 2019, 4(8): 515 − 534. doi: 10.1038/s41578-019-0121-4
    Marques J G, Costa A L, Pereira C. Gibbs free energy (ΔG) analysis for the NaOH (sodium-oxygen-hydrogen) thermochemical water splitting cycle[J]. International Journal of Hydrogen Energy, 2019, 44(29): 14536 − 14549. doi: 10.1016/j.ijhydene.2019.04.064
    Liu W, Wu Y, He J, et al. Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy[J]. Scripta Materialia, 2013, 68(7): 526 − 529. doi: 10.1016/j.scriptamat.2012.12.002
    Craievich P, Weinert M, Sanchez J, et al. Local stability of nonequilibrium phases[J]. Physical Review Letters, 1994, 72(19): 3076. doi: 10.1103/PhysRevLett.72.3076
    杨铭, 刘雄军, 吴渊, 等. 高熵非晶合金研究进展[J]. 中国科学:物理学 力学 天文学, 2020, 50(6): 21 − 33.

    Yang Ming, Liu Xiongjun, Wu Yuan, et al. Research progress in high-entropy amorphous alloys[J]. Science in China: Physics Mechanics Astronomy, 2020, 50(6): 21 − 33.
    Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys[J]. Acta Materialia, 2013, 61(13): 4887 − 4897. doi: 10.1016/j.actamat.2013.04.058
    王天琪, 李天旭, 李亮玉, 等. 复杂结构薄壁件电弧增材制造离线编程技术[J]. 焊接学报, 2019, 40(5): 42 − 47. doi: 10.12073/j.hjxb.2019400125

    Wang Tianqi, Li Tianxu, Li Liangyu, et al. Off-line programming technology for arc additive manufacturing of thin-walled components with complex structures[J]. Transactions of the China Welding Institution, 2019, 40(5): 42 − 47. doi: 10.12073/j.hjxb.2019400125
    Carroll B E, Palmer T A, Beese A M. Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing[J]. Acta Materialia, 2015, 87: 309 − 320. doi: 10.1016/j.actamat.2014.12.054
    杨东青, 王小伟, 黄勇, 等. 熔化极电弧增材制造18Ni马氏体钢组织和性能[J]. 焊接学报, 2020, 41(8): 6 − 9,21. doi: 10.12073/j.hjxb.20200608002

    Yang Dongqing, Wang Xiaowei, Huang Yong, et al. Microstructure and mechanical properties of 18Ni maraging steel deposited by gas metal arc additive manufacturing[J]. Transactions of the China Welding Institution, 2020, 41(8): 6 − 9,21. doi: 10.12073/j.hjxb.20200608002
    Aboulkhair N T, Simonelli M, Parry L, et al. 3D printing of aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting[J]. Progress in Materials Science, 2019, 106: 100578. doi: 10.1016/j.pmatsci.2019.100578
    苗玉刚, 曾阳, 王腾, 等. 基于BC-MIG焊的铝/钢异种金属增材制造工艺[J]. 焊接学报, 2015, 36(7): 5 − 8.

    Miao Yugang, Zeng Yang, Wang Teng, et al. Additive manufacturing process of aluminum / steel dissimilar metal based on BC-MIG welding[J]. Transactions of the China Welding Institution, 2015, 36(7): 5 − 8.
    刘黎明, 贺雅净, 李宗玉, 等. 不同路径下316不锈钢电弧增材组织和性能[J]. 焊接学报, 2020, 41(12): 13 − 19. doi: 10.12073/j.hjxb.20200815002

    Liu Liming, He Yajing, Li Zongyu, et al. Research on microstructure and mechanical properties of 316 stainless steel fabricated by arc additive manufacturing in different paths[J]. Transactions of the China Welding Institution, 2020, 41(12): 13 − 19. doi: 10.12073/j.hjxb.20200815002
    Aramian A, Razavi S M J, Sadeghian Z, et al. A review of additive manufacturing of cermets[J]. Additive Manufacturing, 2020, 33: 101130. doi: 10.1016/j.addma.2020.101130
    Wang Y M, Voisin T, McKeown J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility[J]. Nature Materials, 2018, 17(1): 63 − 71. doi: 10.1038/nmat5021
    尹燕, 赵超, 潘存良, 等. 气体流量对射频等离子体球化GH4169合金粉末的影响[J]. 焊接学报, 2019, 40(11): 100 − 105. doi: 10.12073/j.hjxb.2019400295

    Yin Yan, Zhao Chao, Pan Cunliang, et al. Effect of gas flow rate on the characteristics of RF plasma spheroidized GH4169 alloy powder[J]. Transactions of the China Welding Institution, 2019, 40(11): 100 − 105. doi: 10.12073/j.hjxb.2019400295
    要玉宏, 梁霄羽, 金耀华, 等. 硼对AlMo0.5NbTa0.5TiZr难熔高熵合金组织和高温氧化性能的影响[J]. 表面技术, 2020, 49(2): 235 − 242,287.

    Yao Yuhong, Liang Xiaoyu, Jin Yaohua, et al. Effect of B addition on microstructure and high temperature oxidation resistance of AlMo0.5NbTa0.5TiZr refractory high-entropy alloys[J]. Surface Technology, 2020, 49(2): 235 − 242,287.
    杨阳祎玮, 易敏, 胥柏香. 粉末增材制造微结构的非等温相场模拟[J]. 中南大学学报(自然科学版), 2020, 51(11): 3019 − 3031. doi: 10.11817/j.issn.1672-7207.2020.11.003

    Yangyang Yiwei, Yi Min, Xu Baixiang. Non-isothermal phase-field simulation of microstructure in powder-based additive manufacturing[J]. Journal of Central South University (Science and Technology), 2020, 51(11): 3019 − 3031. doi: 10.11817/j.issn.1672-7207.2020.11.003
    Pauly S, Löber L, Petters R, et al. Processing metallic glasses by selective laser melting[J]. Materials Today, 2013, 16(1−2): 37 − 41. doi: 10.1016/j.mattod.2013.01.018
    Pauly S, Schricker C, Scudino S, et al. Processing a glass-forming Zr-based alloy by selective laser melting[J]. Materials & Design, 2017, 135: 133 − 141.
    Guo J, Goh M, Zhu Z, et al. On the machining of selective laser melting CoCrFeMnNi high-entropy alloy[J]. Materials & Design, 2018, 153: 211 − 220.
    石杰. 3D打印高熵合金—铁基非晶合金复合材料[D]. 武汉: 华中科技大学, 2019.

    Shi Jie. Processing high entropy alloy-Fe-based amorphous alloy composites by 3D-printing[D]. Wuhan: Huazhong University of Science and Technology , 2019.
    Jung H Y, Choi S J, Prashanth K G, et al. Fabrication of Fe-based bulk metallic glass by selective laser melting: A parameter study[J]. Materials & Design, 2015, 86: 703 − 708.
    Di Ouyang , Li N, Xing W, et al. 3D printing of crack-free high strength Zr-based bulk metallic glass composite by selective laser melting[J]. Intermetallics, 2017, 90: 128 − 134.
    Song H, Lei J, Xie J, et al. Laser melting deposition of K403 superalloy: the influence of processing parameters on the microstructure and wear performance[J]. Journal of Alloys and Compounds, 2019, 805: 551 − 564. doi: 10.1016/j.jallcom.2019.07.102
    李青宇, 李涤尘, 张航, 等. 激光熔覆沉积成形NbMoTaTi难熔高熵合金的组织与强度研究[J]. 航空制造技术, 2018, 61(10): 61 − 67.

    Li Qingyu, Li Dichen, Zhang Hang, et al. Study on structure and strength of NbMoTaTi refractory high entropy alloy fabricated by laser cladding deposition[J]. Aeronautical Manufacturing Technology, 2018, 61(10): 61 − 67.
    黄留飞, 孙耀宁, 季亚奇, 等. 激光熔化沉积AlCoCrFeNi2.5高熵合金的组织与力学性能研究[J]. 中国激光, 2021, 48(6): 103 − 110.

    Huang Liufei, Sun Yaoning, Ji Yaqi, et al. Investigation of microstructures and mechanical properties of laser-melting-deposited AlCoCrFeNi2.5 high entroy alloy[J]. Chinese Journal of Lasers, 2021, 48(6): 103 − 110.
    Shu F, Liu S, Zhao H, et al. Structure and high-temperature property of amorphous composite coating synthesized by laser cladding FeCrCoNiSiB high-entropy alloy powder[J]. Journal of Alloys and Compounds, 2018, 731: 662 − 666. doi: 10.1016/j.jallcom.2017.08.248
    Shu F, Yang B, Dong S, et al. Effects of Fe-to-Co ratio on microstructure and mechanical properties of laser cladded FeCoCrBNiSi high-entropy alloy coatings[J]. Applied Surface Science, 2018, 450: 538 − 544. doi: 10.1016/j.apsusc.2018.03.128
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (655) PDF downloads (105) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return