高级检索

耗材摩擦焊接过程热力耦合分析

鞠建忠, 任朝晖, 刘大鹏, 刘佳龙

鞠建忠, 任朝晖, 刘大鹏, 刘佳龙. 耗材摩擦焊接过程热力耦合分析[J]. 焊接学报, 2019, 40(10): 93-99. DOI: 10.12073/j.hjxb.2019400269
引用本文: 鞠建忠, 任朝晖, 刘大鹏, 刘佳龙. 耗材摩擦焊接过程热力耦合分析[J]. 焊接学报, 2019, 40(10): 93-99. DOI: 10.12073/j.hjxb.2019400269
JU Jianzhong, REN Zhaohui, LIU Dapeng, LIU Jialong. Thermo-mechanical coupling analysis of consumable-rod friction welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 93-99. DOI: 10.12073/j.hjxb.2019400269
Citation: JU Jianzhong, REN Zhaohui, LIU Dapeng, LIU Jialong. Thermo-mechanical coupling analysis of consumable-rod friction welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 93-99. DOI: 10.12073/j.hjxb.2019400269

耗材摩擦焊接过程热力耦合分析

基金项目: 国家重点研发计划资助项目(2017YFB1103700);国家自然科学基金资助项目(51475084)
详细信息
    作者简介:

    鞠建忠,男,1994年出生,硕士研究生. 主要从事耗材摩擦焊. Email:1396275758@qq.com

    通讯作者:

    任朝晖,男,博士,教授. Email:zhhren_neu@126.com

Thermo-mechanical coupling analysis of consumable-rod friction welding process

  • 摘要: 以AA6061铝合金为试验对象,基于ABAQUS/Explicit建立耗材摩擦焊三维完全热力耦合模型,分析温度场、等效塑性变形场、轴向缩短量和飞边形状,结果表明,焊接温度低于材料熔点为固相连接,焊接过程塑性金属大量挤出,形成蘑菇头形状的飞边,飞边温度处于480 ℃左右;在稳定焊接阶段,前进侧温度高于返回侧,在垂直于焊缝方向上,焊棒高温区大于焊板高温区,温度分布的不均使得涂层边缘处结合不良. 高温区域趋于稳定后,轴向缩短量和时间呈近线性关系,焊接结束时轴向缩短量为7.5 mm,高温区和塑性变形区都集中在摩擦界面附近的堆积区域.
    Abstract: AA6061 aluminum alloy was taken as the test object, based on ABAQUS/Explicit, a three-dimensional fully thermo-mechanical coupling model for consumable-rod friction welding was established, and the temperature field, equivalent plastic deformation field, axial shortening and flash shape were analyzed. The results shown that the solid phase bonding was achieved because the welding temperature was lower than the melting point of the material, plastic metals were extruded in large quantities to form a mushroom head shape of flash with a temperature of about 480 °C during welding process. In the stable welding stage, the temperature of the advancing side was higher than that of the retreating side. In the direction perpendicular to the welding seam, the high temperature zone of the welding rod was larger than that of the welding plate, and the uneven temperature distribution made the bonding at the edge of the coating poor. The relation between axial shortening and time is nearly linear after the high temperature region tends to be stable, and the number of axial shortening was 7.5 mm at the end of welding. Both the high temperature zone and the plastic deformation zone were concentrated in the accumulation area near the friction interface.
  • 图  1   三维几何模型及网格划分

    Figure  1.   3D geometric model and grid division

    图  2   有限元模拟动能与内能变化曲线

    Figure  2.   Finite Element Simulation of kinetic energy and internal energy change curve

    图  3   预热阶段不同时刻温度云图

    Figure  3.   Temperature cloud at different time in preheating stage

    图  4   飞边形状对比图

    Figure  4.   Comparison of flanged shape

    图  5   焊缝纵截面温度变化云图

    Figure  5.   Temperature change of longitudinal section of weld

    图  6   焊板不同测量位置取点示意图(mm)

    Figure  6.   Point drawing of different position of welding plate

    图  7   焊板不同测量位置温度变化曲线

    Figure  7.   Temperature change curve of different measuring position of welding plate

    图  8   垂直焊缝温度变化

    Figure  8.   Temperature variation in vertical weld seam

    图  9   焊棒中心温度、塑性变形、轴向缩短量变化曲线

    Figure  9.   Variation curves of center temperature, plastic deformation and axial shortening of welding rod.

    图  10   不同时刻焊棒的温度和塑性变形图

    Figure  10.   Temperature and plastic deformation of the welding rod at different time

    表  1   AA6061铝合金的热物理参数

    Table  1   Thermal physical parameters of aluminum alloy AA6061

    温度
    T/℃
    热导率
    λ/(W·m–1·K–1)
    比热容
    C /(J·kg–1·K–1)
    杨氏模量
    E/GPa
    25.016789668.90
    37.817092068.54
    93.317797866.19
    148.91841 00463.09
    260.02011 05253.99
    315.6207107847.48
    371.12171 10440.34
    426.72231 13331.72
    下载: 导出CSV

    表  2   AA6061铝合金的Johnson-Cook本构参数

    Table  2   Johnson-Cook constitutive parameters of AA6061 aluminum alloy

    屈服强度 ReL/MPa硬化常数 B/MPa系数 C硬化指数 n软化指数 m熔点 Tmelt/K室温 Troom/K
    3241140.0020.421.34925298
    下载: 导出CSV
  • [1] 张 旭. 管线钢摩擦堆焊工艺与组织性能研究[D]. 天津: 天津大学, 2017.
    [2] 张彦华, 姚君山. 耗材摩擦焊技术及其应用前景[J]. 中国机械工程, 2000, 11(9): 1010 − 1012. doi: 10.3321/j.issn:1004-132X.2000.09.014

    Zhang Yanhua, Yao Junshan. Consumable-rod friction welding technology and its application prospects[J]. China Mechanical Engineering, 2000, 11(9): 1010 − 1012. doi: 10.3321/j.issn:1004-132X.2000.09.014

    [3]

    Fitseva V, Hanke S, Santos J F D. Influence of rotational speed on process characteristics in friction surfacing of Ti-6Al-4V[J]. Materials and Manufacturing Processes, 2017, 32(5): 557 − 563. doi: 10.1080/10426914.2016.1257799

    [4]

    Galvis J C, Oliveira P H F, Hupalo M F, et al. Influence of friction surfacing process parameters to deposit AA6351-T6 over AA5052-H32 using conventional milling machine[J]. Journal of Materials Processing Technology, 2017, 245: 91 − 105. doi: 10.1016/j.jmatprotec.2017.02.016

    [5]

    Hanke S, Sena I, Coelho R S, et al. Microstructural features of dynamic recrystallization in alloy 625 friction surfacing coatings[J]. Materials and Manufacturing Processes, 2017, 33(3): 270 − 276.

    [6]

    Rafi H K, Ram G D J, Phanikumar G, et al. Friction surfaced tool steel (H13) coatings on low carbon steel: A study on the effects of process parameters on coating characteristics and integrity[J]. Surface and Coatings Technology, 2010, 205(1): 232 − 242. doi: 10.1016/j.surfcoat.2010.06.052

    [7]

    Hanke S, Santos J F D. Comparative study of severe plastic deformation at elevated temperatures of two aluminium alloys during friction surfacing[J]. Journal of Materials Processing Technology, 2017, 247: 257 − 267. doi: 10.1016/j.jmatprotec.2017.04.021

    [8] 李付国, 聂 蕾, 李庆华, 等. GH4169合金惯性摩擦焊接过程组织计算与预测[J]. 焊接学报, 2002, 23(1): 30 − 33. doi: 10.3321/j.issn:0253-360X.2002.01.009

    Li Fuguo, Nie Lei, Li Qinghua, et al. Microstructure simulation and prediction of IN-718 superalloy in inertial friction welding[J]. Transactions of the China Welding Institution, 2002, 23(1): 30 − 33. doi: 10.3321/j.issn:0253-360X.2002.01.009

    [9] 张全忠, 张立文, 桂方亮, 等. GH4169合金连续驱动摩擦焊接过程三维数值模拟[J]. 塑性工程学报, 2005, 12(6): 109 − 113. doi: 10.3969/j.issn.1007-2012.2005.06.026

    Zhang Quanzhong, Zhang Liwen, Gui Fangliang, et al. 3-D numerical simulation of continuous-drive friction welding process of GH4169 alloy[J]. Journal of Plasticity Engineering, 2005, 12(6): 109 − 113. doi: 10.3969/j.issn.1007-2012.2005.06.026

    [10]

    Riahi M, Nazari H. Analysis of transient temperature and residual thermal stresses in friction stir welding of aluminum alloy 6061-T6 via numerical simulation[J]. The International Journal of Advanced Manufacturing Technology, 2011, 55(1–4): 143 − 152. doi: 10.1007/s00170-010-3038-z

    [11]

    Mehra V, Pahari S, Savita A N, et al. Tip failure and residual velocity in impact of hollow Al-6061 T6 projectiles on thin Al-6061 T6 Plates[J]. Procedia Engineering, 2017, 173: 271 − 277. doi: 10.1016/j.proeng.2016.12.012

    [12]

    Boldyrev I S, Shchurov I A, Nikonov A V. Numerical simulation of the aluminum 6061-T6 cutting and the effect of the constitutive material model and failure criteria on cutting forces’ prediction[J]. Procedia Engineering, 2016, 150: 866 − 870. doi: 10.1016/j.proeng.2016.07.031

    [13] 梁荣环. TC4钛合金线性摩擦焊接过程数值模拟研究[D]. 南昌: 南昌航空大学, 2014.
    [14] 王陆钊, 侯振国, 陈晓霞, 等. 铝合金搅拌摩擦焊完全热力耦合数值模拟[J]. 金属加工: 冷加工, 2016(S1): 690 − 692.

    Wang Luzhao, Hou Zhenguo, Chen Xiaoxia, et al. Complete thermo-mechanical coupling numerical simulation of friction stir welding of aluminium alloy[J]. Metal Working (Metal Cutting), 2016(S1): 690 − 692.

    [15]

    Vilaca P, Gandra J, Vidal C. Linear friction based processing technologies for aluminum alloys: surfacing, stir welding and stir channeling[M]. Aluminium Alloys-New Trends in Fabrication and Applications, 2012.

    [16] 姚君山, 孟凡新, 王国庆, 等. 耗材摩擦焊中的耗材过渡与成形机理研究[J]. 中国机械工程, 2002, 13(23): 2052 − 2056. doi: 10.3321/j.issn:1004-132X.2002.23.019

    Yao Junshan, Meng Fanxin, Wang Guoqing, et al. Study on the mechanism of metal transferring and shaping during consumable-rod friction welding[J]. China Mechanical Engineering, 2002, 13(23): 2052 − 2056. doi: 10.3321/j.issn:1004-132X.2002.23.019

  • 期刊类型引用(11)

    1. 庞嘉尧,程伟. 铝合金搅拌摩擦焊接头疲劳性能研究进展. 兵器材料科学与工程. 2025(01): 164-175 . 百度学术
    2. 金玉花,邢逸初,周子正,吴博. 喷丸改性对7050铝合金FSW接头性能的影响. 材料导报. 2023(10): 169-173 . 百度学术
    3. 王龙权,周海涛. 7xxx高强铝合金搅拌摩擦焊研究进展. 焊接. 2023(10): 47-54 . 百度学术
    4. 周韶泽,郭硕,陈秉智,张军,兆文忠. 焊接结构超高周疲劳主S-N曲线拟合及寿命预测方法. 焊接学报. 2022(05): 76-82+118 . 本站查看
    5. 米鹏,王瑞杰,杨庆鹤. 5083铝合金带吻接FSW接头疲劳强度分析. 机械科学与技术. 2021(03): 463-469 . 百度学术
    6. 张龙,陈东高,张迎迎,戴宇,马良超,王大锋,郭庆虎,何逸凡. 7B52-T6叠层铝合金焊接接头组织及疲劳损伤行为. 兵器材料科学与工程. 2021(02): 126-130 . 百度学术
    7. 王池权,石亮,张祥春,刘志毅,邵成伟. 焊接缺陷对异种铝合金TIG对接接头疲劳行为的影响. 北京航空航天大学学报. 2021(07): 1505-1514 . 百度学术
    8. 韦旭,汪建利,汪洪峰. 5052铝合金搅拌摩擦焊接的组织和力学性能. 兵器材料科学与工程. 2020(04): 77-80 . 百度学术
    9. 马青娜,邵飞,白林越,徐倩. 7075铝合金FSW接头腐蚀疲劳性能及断裂特征. 焊接学报. 2020(06): 72-77+101 . 本站查看
    10. 杨立恒,刘建军,张建国,陈大兵,李成钢. 浅析母线伸缩节焊接接头质量. 焊接技术. 2020(S1): 156-160 . 百度学术
    11. 张铁浩,杨志斌,张志毅,张海军,史春元. MIG焊叠加对6A01-T5铝合金FSW焊接头组织及性能的影响. 焊接学报. 2020(09): 81-88+96+101 . 本站查看

    其他类型引用(5)

图(10)  /  表(2)
计量
  • 文章访问数:  242
  • HTML全文浏览量:  18
  • PDF下载量:  31
  • 被引次数: 16
出版历程
  • 收稿日期:  2018-09-06
  • 网络出版日期:  2020-07-12
  • 刊出日期:  2019-09-30

目录

    /

    返回文章
    返回