Effects of MIG welding superposition on microstructure and property of 6A01-T5 FSW joint
-
摘要: 研究了MIG焊叠加对6A01-T5铝合金FSW焊接头组织及性能的影响. 结果表明, MIG/FSW叠加焊缝熔合良好,叠加位置未出现气孔等缺陷,FSW焊核区及热影响区组织发生粗化,叠加位置附近微观组织出现明显改变;叠加区域硬度明显降低,尤其是FSW焊缝热力影响区和热影响区. FSW、中心叠加、前进侧热力影响区叠加和后退侧热力影响区叠加MIG焊接头的抗拉强度分别为219.8, 188.0, 195.4和191.4 MPa,MIG焊叠加降低了接头的抗拉强度,断口均表现韧性断裂特征;FSW焊接头及带有MIG叠加焊缝余高的三种接头中值疲劳强度分别为76.7, 65.0, 67.5和65.0 MPa,MIG焊叠加也使FSW接头的疲劳性能有所下降.Abstract: Effects of MIG welding superposition on microstructure and property of 6A01-T5 FSW joint was researched in this work. The results indicated that the MIG/FSW joints formed well without porosity defects near the superposition. The microstructure of the FSW weld nugget and heat affected zone became coarse and which near the superposition was changed obviously. The hardness value of the superposition was reduced significantly, especially for FSW thermo-mechanically affected zone and heat affected zone. The tensile strengths of the FSW joint, MIG superposition on the FSW weld center, MIG superposition on the FSW advancing side thermo-mechanically affected zone, and MIG superposition on the FSW retreating side thermo-mechanically affected zone were 219.8 MPa, 188.0 MPa, 195.4 MPa and 191.4 MPa, respectively. MIG superposition reduced the FSW joint tensile strength, and the fracture appearance of all joints belonged to ductile fracture. The median fatigue strengths of above the FSW joint and three joints with MIG weld reinforcement were 76.7 MPa, 65.0 MPa, 67.5 MPa and 65.0 MPa respectively. The MIG superposition was also reduced the fatigue properties of the FSW joints.
-
Keywords:
- Aluminum alloy /
- Frication stir welding /
- Superposition welding /
- Mechanical property /
- MIG welding
-
-
图 3 FSW焊接头宏观形貌及微观组织特征
Figure 3. Macro-morphology and micro-structure characteristics of the FSW joint. (a) macroscopic morphology of the joint; (b) weld nugget zone (A zone); (c) advancing side of FSW thermo-mechanically affected zone (B zone); (d) retreating side of FSW thermo-mechanically affected zone (C zone); (e) heat affected zone (D zone)
图 4 FSW焊缝中心叠加MIG焊接头宏观形貌及微观组织特征
Figure 4. Macro-morphology and micro-structure characteristics of the MIG/FSW joint with the superposition at the FSW weld center. (a) macroscopic morphology of the joint; (b) weld nugget zone (A zone); (c) advancing side of FSW thermo-mechanically affected zone (B zone); (d) retreating side of FSW thermo-mechanically affected zone (C zone); (e) heat affected zone (D zone)
图 5 FSW焊缝前进侧热力影响区叠加MIG焊接头宏观形貌及微观组织特征
Figure 5. Macro-morphology and micro-structure characteristics of the MIG/FSW joint with the superposition at the FSW TMAZ (AS) . (a) macroscopic morphology of the joint; (b) weld nugget zone (A zone); (c) MIG fusion line zone near the FSW weld nugget (B zone); (d) advancing side of FSW thermo-mechanically affected zone (C zone); (e) heat affected zone (D zone); (f) retreating side of FSW thermo-mechanically affected zone (E zone); (g) MIG fusion line zone near base material (F zone)
图 6 FSW焊缝后退侧热力影响区叠加MIG焊接头宏观形貌及微观组织特征
Figure 6. Macro-morphology and micro-structure characteristics of the MIG/FSW joint with the superposition at the FSW TMAZ (RS) . (a) macroscopic morphology of the joint; (b) weld nugget zone (A zone); (c) MIG fusion line zone near the FSW weld seam (B zone); (d) advancing side of FSW thermo-mechanically affected zone (C zone); (e) heat affected zone (D zone); (f) MIG fusion line zone near the FSW weld seam (E zone); (g) MIG fusion line zone near base material (F zone)
图 7 FSW及MIG/FSW叠加焊接头的硬度分布
Figure 7. Microhardness profiles of the FSW and MIG/FSW joints. (a) FSW joint; (b) MIG weld superposed at the FSW center; (c) MIG weld superposed at advancing side of FSW thermo-mechanically affected zone; (d) MIG weld superposed at retreating side of FSW thermo-mechanically affected zone
图 9 FSW及MIG/FSW叠加焊接头的断裂位置及断口特征
Figure 9. Fracture locations and fracture characteristics of the FSW and MIG/FSW joints. (a) FSW joint; (b) MIG weld superposed at the FSW center; (c) MIG weld superposed at advancing side of FSW thermo-mechanically affected zone; (d) MIG weld superposed at retreating side of FSW thermo-mechanically affected zone
图 11 FSW及MIG/FSW叠加焊接头疲劳断裂位置
Figure 11. Fatigue rupture locations of the FSW and MIG/FSW joints. (a) FSW joint; (b) MIG weld superposed at the FSW center; (c) MIG weld superposed at advancing side of FSW thermo-mechanically affected zone; (d) MIG weld superposed at retreating side of FSW thermo-mechanically affected zone
表 1 试验母材与填充焊丝化学成分(质量分数,%)
Table 1 Chemical compositions of base metal and filler wire (mass fraction, %)
材料 Si Fe Cu Mn Mg Cr Zn Ti Al 6A01-T5 0.60 0.25 0.20 0.40 0.68 0.20 0.10 0.08 余量 ER5356 0.10 0.40 0.10 0.15 4.80 0.10 0.10 0.13 余量 表 2 S-N曲线参数及疲劳强度
Table 2 Parameters of S-N curves and the fatigue strength
接头组别 m C 疲劳强度 $\Delta {\sigma _0}/{\rm{MPa}}$ 拟合值 试验值 FSW 17.66 1.86 × 1040 76.5 76.7 FSW中心 + MIG 10.21 2.45 × 1025 63.4 65.0 FSW前进侧 + MIG 10.86 4.66 × 1026 64.9 67.5 FSW后退侧 + MIG 9.99 1.64 × 1025 66.5 65.0 -
[1] Lee H A, Jung S B, Jang H H, et al. Structural-optimization-based design process for the body of a railway vehicle made from extruded aluminum panels[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2015, 230(4): 1283 − 1296.
[2] 韩晓辉, 李帅贞, 毛镇东, 等. 高速列车用6106-T6铝合金型材激光-电弧复合焊接工艺及接头性能[J]. 中国激光, 2019, 46(12): 1202004. doi: 10.3788/CJL201946.1202004 Han Xiaohui, Li Shuaizhen, Mao Zhendong, et al. Laser-arc hybrid welding process and joint performances of 6106-T6 aluminum alloy profiles for high speed trains[J]. Chinese Journal of Lasers, 2019, 46(12): 1202004. doi: 10.3788/CJL201946.1202004
[3] 杨则云. 高强度铝合金及其先进焊接技术研究现状及发展方向[J]. 电焊机, 2018, 48(3): 255 − 259. Yang Zeyun. Research status and development direction of high strength aluminum alloy and its advanced welding technologies[J]. Electric Welding Machine, 2018, 48(3): 255 − 259.
[4] Peng Y, Shen C, Zhao Y, et al. Comparison of bectrochemical behaviors between FSW and MIG joints for 6082 aluminum alloy[J]. Rare Metal Materials & Engineering, 2017, 46(2): 344 − 348.
[5] 韩晓辉, 陶传琦, 张铁浩, 等. 搅拌摩擦焊技术在轨道车辆铝合金车体制造中的应用与展望[J]. 现代焊接, 2016, 6: 16 − 20. Han Xiaohui, Tao Chuanqi, Zhang Tiehao, et al. Application and prospect of friction stir welding technology in aluminum alloy body manufacturing of railway vehicle[J]. Modern Welding, 2016, 6: 16 − 20.
[6] Shanavas S, Dhas JER. Parametric optimization of friction stir welding parameters of marine grade aluminium alloy using response surface methodology[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(11): 2334 − 2344. doi: 10.1016/S1003-6326(17)60259-0
[7] 王振苏, 黄凌骄, 柴鹏, 等. 7N01铝合金搅拌摩擦焊接头组织与性能分析[J]. 焊接学报, 2017, 38(9): 115 − 118. Wang Zhensu, Huang Lingjiao, Chai Peng, et al. Microstructure and mechanical properties of friction stir welded 7N01 aluminum alloy lap joints[J]. Transactions of the China Welding Institution, 2017, 38(9): 115 − 118.
[8] Saccon V T, Parra B S, Olea C W, et al. Microstructural characterization and mechanical behavior of an AA2139 T3 and T8 aluminum alloy joined by friction stir welding (FSW)[J]. Soldagem and Inspecao, 2010, 15(4): 289 − 297. doi: 10.1590/S0104-92242010000400006
[9] 栾国红, 胡煌辉, 柴鹏. 搅拌摩擦焊-新型列车制造新技术[J]. 电力机车与城轨车辆, 2006, 4: 40 − 43. doi: 10.3969/j.issn.1672-1187.2006.03.013 Luan Guohong, Hu Huanghui, Chai Peng. Friction stir welding – in-novative rail vehicle manufacturing process[J]. Electric Locomotives and Mass Transit Vehicles, 2006, 4: 40 − 43. doi: 10.3969/j.issn.1672-1187.2006.03.013
[10] 王炎金. 铝合金车体焊接工艺[M]. 北京: 机械工业出版社, 2011. Wang Yanjin. Welding process for aluminum alloy car body [M]. Beijing: China Machine Press, 2011.
[11] 高祎晗, 国旭明, 莫春立. 铝合金无减薄搅拌摩擦焊工艺优化及特征分析[J]. 焊接学报, 2019, 40(4): 141 − 147. doi: 10.12073/j.hjxb.2019400115 Gao Yihan, Guo Xuming, Mo Chunli. Parameters optimization and character analysis of the zero-weld-thinning friction stir welding process of aluminum alloy[J]. Transactions of the China Welding Institution, 2019, 40(4): 141 − 147. doi: 10.12073/j.hjxb.2019400115
[12] Huang Y X, Meng X C, Lü, Z L, et al. Microstructures and mechanical properties of micro friction stir welding (μ FSW) of 6061-T4 aluminum alloy[J]. Journal of Materials Research and Technology – JMR & T, 2019, 8(1): 1084 − 1091.
[13] Aziz S B, Dewan M W, Huggett D J, et al. A fully coupled thermomechanical model of friction stir welding (FSW) and numerical studies on process parameters of lightweight aluminum alloy joints[J]. Acta Metallurgica Sinica – English letters, 2018, 31(1): 1 − 18. doi: 10.1007/s40195-017-0658-4
[14] 邓彩艳, 高仁, 龚宝明, 等. 7050铝合金搅拌摩擦焊接头超高周疲劳强度[J]. 焊接学报, 2018, 39(11): 114 − 118. doi: 10.12073/j.hjxb.2018390284 Deng Caiyan, Gao Ren, Gong Baoming, et al. Research on ultra-high-cycle fatigue properties of 7050 aluminum alloy FSW welded joints[J]. Transactions of the China Welding Institution, 2018, 39(11): 114 − 118. doi: 10.12073/j.hjxb.2018390284
[15] 佟建华, 张坤, 林松, 等. 搅拌摩擦焊和熔化极气体保护焊6082铝合金疲劳性能分析[J]. 焊接学报, 2015, 36(7): 105 − 109. Tong Jianhua, Zhang Kun, Lin Song, et al. Comparison of fatigue property of 6082 aluminum alloy joint by friction stir welding and metal inert-gas welding[J]. Transactions of the China Welding Institution, 2015, 36(7): 105 − 109.