高级检索

7075铝合金FSW接头腐蚀疲劳性能及断裂特征

马青娜, 邵飞, 白林越, 徐倩

马青娜, 邵飞, 白林越, 徐倩. 7075铝合金FSW接头腐蚀疲劳性能及断裂特征[J]. 焊接学报, 2020, 41(6): 72-77. DOI: 10.12073/j.hjxb.20200320001
引用本文: 马青娜, 邵飞, 白林越, 徐倩. 7075铝合金FSW接头腐蚀疲劳性能及断裂特征[J]. 焊接学报, 2020, 41(6): 72-77. DOI: 10.12073/j.hjxb.20200320001
MA Qingna, SHAO Fei, BAI Linyue, XU Qian. Study on corrosion fatigue properties and fracture characteristics of 7075 aluminum alloy FSW joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(6): 72-77. DOI: 10.12073/j.hjxb.20200320001
Citation: MA Qingna, SHAO Fei, BAI Linyue, XU Qian. Study on corrosion fatigue properties and fracture characteristics of 7075 aluminum alloy FSW joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(6): 72-77. DOI: 10.12073/j.hjxb.20200320001

7075铝合金FSW接头腐蚀疲劳性能及断裂特征

基金项目: 中国博士后科学基金(2018M643852);十三五装备预研项目(30110010403;30110030103).
详细信息
    作者简介:

    马青娜,1980年出生,博士研究生;主要研究方向为金属的腐蚀疲劳; Email: mqingna1980@sina.com.

    通讯作者:

    邵飞,博士,教授,博士研究生导师;Email: shaofei@seu.edu.cn.

  • 中图分类号: TG 405

Study on corrosion fatigue properties and fracture characteristics of 7075 aluminum alloy FSW joint

  • 摘要: 以7075-T6铝合金搅拌摩擦焊接头为研究对象,对其显微组织结构、3.5% NaCl(质量分数)溶液腐蚀疲劳寿命和腐蚀疲劳断裂特征进行了研究,分析了7075铝合金搅拌摩擦焊接头的腐蚀疲劳性能及断裂过程.结果表明,7075-T6铝合金搅拌摩擦焊接头腐蚀疲劳S-N曲线方程为lgN=5.845-0.014S,随着应力幅增大,腐蚀疲劳寿命大幅度降低;腐蚀疲劳裂纹起源于接头的热影响区,逐渐扩展最终断裂于接头的焊核区.腐蚀疲劳断口存在多个裂纹源,且受到应力集中作用的影响,裂纹源萌生于腐蚀坑处.高应力作用加剧了试样边角部分的腐蚀损伤,导致边角比平面位置腐蚀程度更严重.裂纹扩展区出现了明显的晶间断裂和疲劳辉纹;在腐蚀介质和交变载荷的共同作用下,裂纹扩展区腐蚀程度最重,晶界处产生了阳极溶解现象并产生了“冰糖块状”和“蚁巢状”的形貌特征;瞬断区产生了大量解理台阶和二次裂纹,为脆性断裂,在第二相粒子分布区域存在孔洞形貌特征.
    Abstract: Taking 7075-T6 aluminum alloy friction stir welding joint as the research object, the microstructure, 3.5 wt % NaCl solution corrosion fatigue life and corrosion fatigue fracture characteristics were studied, and the corrosion fatigue performance and fracture process of 7075 aluminum alloy friction stir welding joint were analyzed. The results showed that: the S-N curve equation of corrosion fatigue of 7075-T6 aluminum alloy friction stir welded joint is lgN=5.845-0.014S, With the increasing of stress amplitude, the corrosion fatigue life decreased greatly. The corrosion fatigue crack originated in the thermal affected zone of the joint, gradually expanded and finally broke in the welded core zone of the joint. There were multiple crack sources in the corrosion fatigue fracture, and with the influence of stress concentration, the crack source originated in the corrosion pit. The high stress aggravated the corrosion damage of the corner part of the sample, led to more serious corrosion than that of the plane position. Obvious intergranular fracture and fatigue striation appeared in the crack growth zone. Under the combined action of corrosive medium and alternating load, the crack growth zone suffered the most serious corrosion, and the anodic dissolution occurred at the grain boundary, resulting in the morphology characteristics of “rock candy” and “ant nest”. Instantaneous fault zone was brittle fault,and there were a lot of cleavage steps and secondary cracks in this zone, the pore morphology appeared in the second phase particle distribution region.
  • 图  1   试件切割图

    Figure  1.   Specimen cutting diagram

    图  2   腐蚀疲劳试件(mm)

    Figure  2.   Corrosion fatigue specimen

    图  3   FSW焊接接头各区的分布

    Figure  3.   Distribution of FSW welded joints

    图  4   FSW接头显微组织

    Figure  4.   Microstructure of FSW joint. (a) microstructure of NZ; (b) microstructure of TMAZ; (c) microstructure of HAZ

    图  5   焊接接头腐蚀疲劳S-N曲线

    Figure  5.   Corrosion fatigue S-N curve of welded joints

    图  6   腐蚀疲劳断裂前后的实物

    Figure  6.   Material before and after corrosion fatigue fracture

    图  7   FSW焊接接头各区横断面示意图

    Figure  7.   Cross section diagram of FSW welded joints

    图  8   腐蚀疲劳宏观断口形貌

    Figure  8.   Appearance of corrosion fatigue fracture

    图  9   腐蚀疲劳源断口形貌

    Figure  9.   Fracture morphology of corrosion fatigue source. (a) morphology map around crack source; (b) morphology of crack source region

    图  10   裂纹扩展区形貌图

    Figure  10.   Morphology of crack propagation zone. (a) fatigue striations; (b) intergranular corrosion; (c) ant-nest corrosion

    图  11   瞬断区形貌图

    Figure  11.   Morphology of instantaneous fault zone

    表  1   焊接工艺参数

    Table  1   Welding parameters

    主轴转速n/(r·min−1)焊接速度$\nu $/(mm·min−1)搅拌头倾角$\theta $/(°)搅拌针转动方向
    7001502.5逆时针
    下载: 导出CSV

    表  2   FSW腐蚀疲劳试验数据

    Table  2   Corrosion fatigue test results of FSW

    试样编号应力幅
    $\sigma $/MPa
    加载频率
    f/Hz
    应力比
    R
    腐蚀疲劳寿命
    N(周次)
    A12500.30.06190
    A22500.30.06230
    A32500.30.06326
    B12300.30.06645
    B22300.30.06732
    B32300.30.06790
    C11800.30.062822
    C21800.30.062980
    C31800.30.063243
    D11500.30.066435
    D21500.30.067023
    D31500.30.068230
    E11300.30.069230
    E21300.30.0610560
    E31300.30.0612542
    下载: 导出CSV

    表  3   S-N曲线方程及参数

    Table  3   S-N curve equations and parameters

    铝合金牌号S-N方程mC
    7075—T6lgN = 5.852 − 0.014S0.0320.71 × 106
    下载: 导出CSV
  • [1] 张坤, 方远方, 栾国红, 等. 静止轴肩搅拌摩擦焊接6005铝合金的力学和疲劳性能[J]. 焊接学报, 2017, 38(10): 25 − 29.

    Zhang Kun, Fang Yuanfang, Luan Guohong, et al. Mechanical and fatigue property of stationary shoulder friction stir welding AA6005[J]. Transactions of the China Welding Institution, 2017, 38(10): 25 − 29.

    [2]

    Rodriguez R I, Jordon J B, Allison P G, et al. Low-cycle fatigue of dissimilar friction stir welded aluminum alloys[J]. Materials Science & Engineering A, 2016, 654: 236 − 248.

    [3] 邓彩艳, 高仁, 龚宝明, 等. 7050铝合金搅拌摩擦焊接头超高周疲劳性能[J]. 焊接学报, 2017, 39(11): 114 − 118.

    Deng Caiyan, Gao Ren, Gong Baoming, et al. Research onultrahighcycle fatigue properties of 7050 aluminum alloy FSW welded joints[J]. Transactions of the China Welding Institution, 2017, 39(11): 114 − 118.

    [4] 赵熠朋, 朱浩, 姜月, 等. 7075铝合金搅拌摩擦焊接头断裂机理[J]. 焊接学报, 2017, 38(11): 78 − 82.

    Zhao Yipeng, Zhu Hao, Jiang Yue, et al. Fracture mechanism of 7075 aluminum alloy friction stir joint[J]. Transactions of the China Welding Institution, 2017, 38(11): 78 − 82.

    [5]

    Sun Guoqin, Wang Chongwen, Wei Xinhai, et al. Study on small fatigue crack initiation and growth for friction stir welded joints[J]. Materials Science & Engineering A, 2019, 739: 71 − 85.

    [6]

    Abubakr Kraedegh,Aleksandar Sedmak, Aleksandar Grbovic, et al. Stringer effect on fatigue crack propagation in A2024-T351 aluminum alloy welded joints[J]. International Journal of Fatigue, 2017(105): 276 − 282.

    [7]

    Guo Shihui, Shah Luqman, Ranjan Rakesh, et al. Effect of quality control parameter variations on the fatigue performance of aluminum friction stir welded joints[J]. International Journal of Fatigue, 2019, 118: 150 − 161.

    [8]

    Lumsden J B, Mahoney M W, Rhodes C G, et al. Corrosion behavior of friction-stir-welded AA7050-T7651[J]. Corrosion, 2003, 59(3): 212 − 219. doi: 10.5006/1.3277553

    [9] 张华, 孙大同, 张贺, 等. 2219铝合金搅拌摩擦焊接头腐蚀行为[J]. 焊接学报, 2014, 35(7): 39 − 42.

    Zhang Hua, Sun Datong, Zhang He, et al. Corrosion behavior of friction stir welded 2219 aluminum alloy[J]. Transactions of the China Welding Institution, 2014, 35(7): 39 − 42.

    [10]

    Li Yajie, Qin Fengming, Liu Cuirong, et al. Flow law, microstructure and corrosion behavior of friction stir welded 5A06 alloy[J]. Rare Metal Materials and Engineering, 2018, 47(8): 2353 − 2359. doi: 10.1016/S1875-5372(18)30191-7

    [11] 张华, 崔冰, 林三宝, 等. 7050铝合金搅拌摩擦焊接头腐蚀行为分析[J]. 焊接学报, 2018, 39(7): 71 − 74.

    Zhang Hua, Cui Bing, Lin Sanbao, et al. Corrosion behavior of friction stir welded Joints of 7050 aluminum alloy[J]. Transactions of the China Welding Institution, 2018, 39(7): 71 − 74.

    [12]

    Sun Guoqin, Wang Chongwen, Wei Xinhai, et al. Study on small fatigue crack initiation and growth for friction stir welded joints[J]. Materials Science & Engineering A, 2019(739): 71-85.

    [13]

    Pedro Atz Dick, Gerhard H.Knörnschild, Luís F.P.Dick. Anodising and corrosion resistance of AA 7050 friction stir welds[J]. Corrosion Science, 2017, 114: 028 − 036.

    [14] 谢利, 王江涛, 卢雅琳, 等. 双轴肩搅拌摩擦焊对7075铝合金组织和性能的影响[J]. 电焊机, 2019, 49(2): 55 − 59.

    Xie Li, Wang Jiangtao, Lu Yalin, et al. Microstructure and properties of bobbin-tool FSW for the 7075 aluminum alloy[J]. Electric Welding Machine, 2019, 49(2): 55 − 59.

    [15]

    Rodriguez R I, Jordon J B, Allison P G, et al. Corrosion effects on fatigue behavior of dissimilar friction stir welding of highstrength aluminum alloys[J]. Materials Science & Engineering A, 2019, 742: 255 − 268.

    [16] 李旭东, 穆志韬, 苏维国, 等. 6A02铝合金腐蚀疲劳断口分析[J]. 青岛科技大学学报(自然科学版), 2013, 34(3): 285 − 289.

    Li Xudong, Mu Zhitao, Su Weiguo, et al. Corrosion fatigue fracture analysis of 6A02 aluminm alloy[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2013, 34(3): 285 − 289.

    [17]

    Hatamleh Omar, Preet M Singh, Hamid Garmestani. Stress corrosion cracking behavior of peened friction stir welded 2195 aluminum alloy Joints[J]. Journal of Materials Engineering and Performance, 2009, 18(4): 406 − 413. doi: 10.1007/s11665-008-9303-8

    [18] 刘德强. 7075铝合金厚板搅拌摩擦焊接头腐蚀行为研究[D]. 南昌: 南昌航空大学, 2016.

    Liu Deqiang. Investigation of the corrosion behavior of fric-tion stir welded joints in 20 mm thick 7075 aluminum alloy[D]. Nanchang: Nanchang Hangkong University, 2016.

图(11)  /  表(3)
计量
  • 文章访问数:  815
  • HTML全文浏览量:  100
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-19
  • 网络出版日期:  2020-09-26
  • 刊出日期:  2020-09-26

目录

    /

    返回文章
    返回