不同CMT工艺2014-T6焊缝成形及气孔分析
Weld formation and porosity of 2014-T6 aluminum alloy welds produced by cold metal transfer process
-
摘要: 分别采用3种不同的冷金属过渡(CMT)焊接工艺进行2014-T6铝合金平板堆焊成形,研究不同CMT工艺对铝合金焊缝成形特征及气孔的影响. 结果表明,保持送丝速度7.5 m/min、电弧长度和保护气体纯Ar流量25L/min不变,2014-T6铝合金常规CMT焊缝具有明显的指状熔深特征,焊缝气孔缺陷严重且呈全焊缝分布特征;脉冲CMT(CMT-P)焊缝的指状熔深特征减缓,气孔显著减少,焊接速度0.6 m/min时焊缝基本无气孔;变极性复合脉冲CMT(CMT-PADV)焊缝熔深仅约0.4 mm,成形呈显著球形特征,气孔明显减少,焊接速度0.4 m/min时基本无气孔.Abstract: The weld formation and porosity characteristics of 2014-T6 aluminum alloy using three different cold metal transfer welding processes were investigated. Experimental results show that, with constant wire feed speed of 7.5 m/min, contact tip to work distance of 15 mm and pure argon shielding gas flow rate of 25 L/min, finger-shape penetration is observed using the conventional CMT process and there are many gas pores in the lower and upper part of the weld. The volume of the finger-shape weld metal is decreased and the gas pore is reduced significantly using the pulsed CMT process. The porosity is almost eliminated using the welding speed of 0.6 m/min. Spherical-shape weld is achieved using the CMT welding process. The gas pore is also significantly reduced and drop to zero with the welding speed of 0.4 m/min.
-
Keywords:
- aluminum alloy /
- cold metal transfer welding /
- weld formation /
- porosity
-
-
[1] Pickin C G, Young K. Evaluation of cold metal transfer (CMT) process for welding aluminium alloy[J]. Science and Technology of Welding and Joining, 2006, 11(5): 583-585. [2] Feng Jicai, Zhang Hongtao, He Peng. The CMT short-circuiting metal transfer process and its use in thin aluminium sheets welding[J]. Materials and Design, 2009, 30(5): 1850-1852. [3] Zhang Hongtao, Feng Jicai, He Peng, et al. The arc characteristics and metal transfer behaviour of cold metal transfer and its use in joining aluminium to zinc-coated steel[J]. Materials Science and Engineering A, 2009, 499: 111-113. [4] Shang Jing, Wang Kehong, Zhou Qi, et al. Microstructure characteristics and mechanical properties of cold metal transfer welding Mg/Al dissimilar metals[J]. Materials and Design, 2012, 34: 559-565. [5] Cao R, Wen B F, Chen J H, et al. Cold metal transfer joining of magnesium AZ31B-to-aluminum A6061-T6[J]. Materials Science and Engineering A, 2013, 560: 256-266. [6] Pépe N, Egerland S, Colegrove P A, et al. Measuring the process efficiency of controlled gas metal arc welding processes[J]. Science and Technology of Welding and Joining, 2011, 16(5): 412-417. [7] Dupont J N, Marder A R. Thermal efficiency of arc welding processes[J]. Welding Journal, 1995, 74(12): 406s-416s. [8] Kou S, Wang Y H. Weld pool convection and its effect[J]. Welding Journal, 1986, 65(3): 63s-70s. [9] Lin M L, Eagar T W. Influence of arc pressure on weld pool geometry[J]. Welding Journal, 1985, 64(6): 162s-169s. -
期刊类型引用(12)
1. 李宏猷,成小乐,邢宇,刘福广,常哲,吴晓俊. 面向锅炉水冷壁管的冷金属过渡熔覆工艺路径优化研究. 热力发电. 2024(12): 120-128 . 百度学术
2. 王霄腾,吴宏,蒲英钊. 双丝堆焊成形工艺研究. 金属加工(热加工). 2023(04): 105-109 . 百度学术
3. 王强,霍文涛,恒俊楠. 汽车铝合金薄板CMT和MIG对比焊接工艺研究. 有色金属加工. 2022(03): 16-20 . 百度学术
4. 周金旭,李岩,杨宇,林传冬,齐芃芃,张春旭. 6005A铝合金CMT与MIG焊接头组织及性能研究. 有色金属加工. 2020(01): 22-25+38 . 百度学术
5. 姜文祥,秦优琼,何西. 不同工作模式下7075铝合金/镀锌钢冷金属过渡熔钎焊接头组织及性能研究. 热加工工艺. 2019(05): 77-80 . 百度学术
6. 赵昀,卢振洋,陈树君,李方. 薄壁结构冷金属过渡增材制造工艺优化. 西安交通大学学报. 2019(08): 82-89 . 百度学术
7. 张习羽,王晓帅,叶昕,国礼杰. 6061铝合金CMT焊接气孔影响因素研究. 热加工工艺. 2019(19): 43-47 . 百度学术
8. 韩善果,刘朋,易耀勇,蔡得涛. 双丝CMT堆焊高强钢工艺. 焊接技术. 2018(03): 42-45+6 . 百度学术
9. 夏晶宇,张洪伟,王鹏浩,张家齐,汪棣. 3003铝合金薄板超高转速搅拌摩擦焊接头的组织与性能. 理化检验(物理分册). 2018(07): 479-482+507 . 百度学术
10. 刘晓莉,王建,王勇,闫德俊,冯梓宁,陈军,高飞. 铝合金中厚板双丝CMT单面焊双面成形焊接工艺. 焊接技术. 2018(11): 44-47 . 百度学术
11. 周洋,戴智鑫,方可伟,薛俊荣. 超高转速搅拌摩擦焊铝合金板的焊接变形和残余应力. 理化检验(物理分册). 2017(07): 482-486 . 百度学术
12. 从保强,苏勇,齐铂金,祁泽武,王强,杨明轩. 铝合金脉冲电弧焊接技术进展. 航空制造技术. 2016(11): 41-46 . 百度学术
其他类型引用(16)
计量
- 文章访问数: 348
- HTML全文浏览量: 12
- PDF下载量: 104
- 被引次数: 28