高级检索

2024-T4铝合金FSW接头疲劳裂纹扩展行为及寿命预测

王磊, 李东侠, 回丽, 沈振鑫, 周松

王磊, 李东侠, 回丽, 沈振鑫, 周松. 2024-T4铝合金FSW接头疲劳裂纹扩展行为及寿命预测[J]. 焊接学报, 2023, 44(4): 77-83. DOI: 10.12073/j.hjxb.20220507002
引用本文: 王磊, 李东侠, 回丽, 沈振鑫, 周松. 2024-T4铝合金FSW接头疲劳裂纹扩展行为及寿命预测[J]. 焊接学报, 2023, 44(4): 77-83. DOI: 10.12073/j.hjxb.20220507002
WANG Lei, LI Dongxia, HUI Li, SHEN Zhenxin, ZHOU Song. Fatigue crack propagation behavior and life prediction of 2024-T4 aluminum alloy FSW joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 77-83. DOI: 10.12073/j.hjxb.20220507002
Citation: WANG Lei, LI Dongxia, HUI Li, SHEN Zhenxin, ZHOU Song. Fatigue crack propagation behavior and life prediction of 2024-T4 aluminum alloy FSW joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 77-83. DOI: 10.12073/j.hjxb.20220507002

2024-T4铝合金FSW接头疲劳裂纹扩展行为及寿命预测

基金项目: 国家自然科学基金资助项目(51775355)
详细信息
    作者简介:

    王磊,博士,教授,博士研究生导师;主要从事金属材料及焊接结构强度评定、损伤修复与寿命分析的研究工作;Email: leiwang@sau.edu.cn

  • 中图分类号: TG 405

Fatigue crack propagation behavior and life prediction of 2024-T4 aluminum alloy FSW joints

  • 摘要: 基于ABAQUS与FRANC 3D联合仿真的方法,对2024-T4铝合金搅拌摩擦焊接头预制裂纹于不同部位的紧凑拉伸试样进行裂纹扩展分析以及寿命预测,并深入分析不同部位裂纹扩展行为存在差异性的原因. 结果表明,随着裂纹长度的不断延长,裂纹尖端应力强度因子随之增大,且裂纹向前扩展路径基本沿直线扩展,ABAQUS与FRANC 3D联合仿真方法分析不同部位的裂纹尖端应力强度因子和裂纹扩展路径的理论计算和试验结果基本吻合,验证了分区域进行联合仿真的模型精度满足要求.不同部位裂纹扩展试样寿命预测结果与试验结果的相对误差均在5%左右,对焊接接头分区域联合仿真进行寿命预测是准确可行的. 裂纹位于不同部位的扩展试样断口处的疲劳辉纹间距不同导致预制裂纹于3个部位的疲劳寿命由低到高为:热影响区、垂直于焊缝方向、焊核区.
    Abstract: Based on the method of ABAQUS and FRANC 3D co-simulation, the crack growth analysis and life prediction were carried out on the compact tensile specimens with precracks in different zones of 2024-T4 aluminum alloy friction stir welding (FSW) joints, and the causes of the differences in crack propagation behavior in different zones were analyzed. The results showed that the crack tip stress intensity factor increased with the growth in crack length, and the crack forward expansion path basically expanded along the straight line. ABAQUS and FRANC 3D joint simulation method analysis of different areas of crack tip stress intensity factor and crack propagation path basically consistent with the theoretical calculation and test results, verifying that the model accuracy of the joint simulation by subregion is satisfactory. The relative errors of the life prediction results in different zones and the test results are about 5%, so it is accurate and feasible to predict the life of the joint by regional co-simulation. The fatigue striation spacing at the crack propagation fracture in different zones is different, resulting in the fatigue life of the prefabricated crack in three zones from low to high: the heat affected zone, perpendicular to the weld direction, and the weld core zone.
  • 图  1   不同部位的裂纹扩展试样(mm)

    Figure  1.   Crack propagation samples in different regions. (a) NZ sample; (b) HAZ sample; (c) PW sample

    图  2   模型分区的CT试样

    Figure  2.   CT sample diagram of model partition. (a) NZ sample; (b) HAZ sample; (c) PW sample

    图  3   2024-T4铝合金FSW多区域裂纹扩展裂纹尖端应力强度因子

    Figure  3.   Crack tip stress intensity factor for multi-region crack propagation in 2024-T4 aluminum alloy FSW. (a) NZ sample; (b) HAZ sample; (c) PW sample

    图  4   2024-T4铝合金FSW多区域裂纹扩展路径

    Figure  4.   Multi-region crack propagation path of 2024-T4 aluminum alloy FSW. (a) NZ sample; (b) HAZ sample; (c) PW sample

    图  5   FRANC 3D仿真2024-T4铝合金FSW多区域裂纹扩展路径

    Figure  5.   FRANC 3D simulation of 2024-T4 aluminum alloy FSW multi-region crack propagation path. (a) NZ sample; (b) HAZ sample; (c) PW sample

    图  6   2024-T4铝合金FSW多区域裂纹扩展寿命

    Figure  6.   Multi-region crack propagation life of 2024-T4 aluminum alloy FSW. (a) NZ sample; (b) HAZ sample; (c) PW sample

    图  7   2024-T4铝合金FSW多区域裂纹低速扩展断口形貌

    Figure  7.   Fracture morphologies of 2024-T4 aluminum alloy FSW multi-regional crack propagation at low speed. (a) NZ sample; (b) HAZ sample; (c) PW sample

    图  8   2024-T4铝合金FSW多区域裂纹中速扩展断口形貌

    Figure  8.   Fracture morphologies of 2024-T4 aluminum alloy FSW multi-region crack propagation at medium speed. (a) NZ sample; (b) HAZ sample; (c) PW sample

    图  9   2024-T4铝合金FSW多区域裂纹高速扩展断口形貌

    Figure  9.   Fracture morphologies of 2024-T4 aluminum alloy FSW multi-region crack propagation at high speed. (a) NZ sample; (b) HAZ sample; (c) PW sample

    表  1   2024-T4合金的化学成分(质量分数,%)

    Table  1   2024-T4 alloy chemical composition

    Si Fe Cu Mg Zn Ti Mn Ni Fe+Ni Al
    0.5 0.5 3.8 ~ 4.9 1.2 ~ 1.8 0.3 0.15 0.3 ~ 0.9 0.1 0.5 余量
    下载: 导出CSV

    表  2   ABAQUS输入焊接接头不同分区材料参数

    Table  2   ABAQUS input material parameters for different regions of welded joints

    区域 弹性模量
    E/GPa
    泊松比μ 屈服强度
    ReL/MPa
    母材 73 0.33 353
    热力影响区 73 0.33 264
    热影响区 73 0.33 266
    焊核区 73 0.33 285
    下载: 导出CSV

    表  3   疲劳裂纹扩展Paris基本参数

    Table  3   Fatigue crack propagation Paris basic parameters

    试样类型 m C/10−12 门槛值ΔKth/( ${\rm{MPa}}\cdot{\rm{m}}^{\frac{1}{2}} $ )
    NZ 2.97 10.1 42.1
    HAZ 3.05 9.22 35.4
    PW 3.5 2.07 38.9
    下载: 导出CSV

    表  4   2024-T4铝合金FSW多区域裂纹扩展寿命对比

    Table  4   Comparison of multi-region crack propagation life of 2024-T4 aluminum alloy FSW

    试样
    类型
    裂纹长度
    a/mm
    寿命N/周次 相对误差
    e(%)
    试验值 仿真值
    NZ 9 135 500 128 552 5.1
    15 168 500 161 203 4.3
    25 181 700 179 804 1.0
    HAZ 8.7 100 500 93 680 6.7
    13.0 115 500 114 510 0.85
    23.2 125 900 133 334 −5.9
    PW 7.5 119 000 110 739 6.9
    15.3 151 500 138 913 8.3
    26.6 156 680 148 762 5.0
    下载: 导出CSV
  • [1] 杨炳鑫, 马运五, 山河, 等. 2Al2-T4铝合金自冲摩擦铆焊接头力学行为研究[J]. 航空学报, 2022, 43(2): 625111.

    Yang Bingxin, Ma Yunwu, Shan He, et al. Mechanical performance of friction self-piercing riveted joint for 2A12-T4 aluminum alloy[J]. Acta Aeronautica ET Astronautica Sinica, 2022, 43(2): 625111.

    [2] 韩丽娟, 李小欣, 李继承. 焊丝对2A12铝合金焊接接头组织和力学性能的影响[J]. 机械工程材料, 2015, 39(3): 32 − 35.

    Han Lijuan, Li Xiaoxin, Li Jicheng. Effects of welding wires on microstructure and mechanical properties of 2A12 aluminum alloy welded joints[J]. Materials for Mechanical Engineering, 2015, 39(3): 32 − 35.

    [3]

    Xiao K, Liu P, Sun L S Y, et al. Study on fatigue crack propagation and fracture characterization of 7050-T7451 friction stir welded joints[J]. Journal of Materials Engineering and Performance, 2021, 30(8): 5625 − 5632. doi: 10.1007/s11665-021-05797-y

    [4]

    Zhang L, Zhong H L, Li S C, et al. Microstructure mechanical properties and fatigue crack growth behavior of friction stir welded joint of 6061–T6 aluminum alloy[J]. International Journal of Fatigue, 2020, 135: 105556. doi: 10.1016/j.ijfatigue.2020.105556

    [5]

    Wang L, Hui L, Zhou S, at al. Effect of corrosive environment on fatigue property and crack propagation behavior of Al 2024 friction stir weld[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(11): 2830 − 2837. doi: 10.1016/S1003-6326(16)64411-4

    [6]

    Barrallier D. Friction stir welding of AZ31 magnesium alloy rolled sheets: Influence of processing parameters[J]. Acta Materialia, 2009, 57(2): 326 − 334. doi: 10.1016/j.actamat.2008.09.011

    [7]

    Wu D, Li W Y, Liu X C, et al. Effect of material configuration and welding parameter on weld formability and mechanical properties of bobbin tool friction stir welded Al-Cu and Al-Mg aluminum alloys[J]. Materials Characterization, 2021, 182: 111518. doi: 10.1016/j.matchar.2021.111518

    [8]

    Tra T H, Okazaki M, Suzuki K. Fatigue crack propagation behavior in friction stir welding of AA6063-T5: Roles of residual stress and microstructure[J]. International Journal of Fatigue, 2012, 43: 23 − 29. doi: 10.1016/j.ijfatigue.2012.02.003

    [9]

    Lezcano R, Rodríguez C, Peñuelas I, et al. Effect of mechanical mismatching on the ductile-to-brittle transition curve of welded joints[J]. Engineering Failure Analysis, 2009, 16(8): 2576 − 2585. doi: 10.1016/j.engfailanal.2009.04.030

    [10]

    Rao H M, Jordon J B, Ghaffari B, et al. Fatigue and fracture of friction stir linear welded dissimilar aluminum-to-magnesium alloys[J]. International Journal of Fatigue, 2016, 82(3): 737 − 747.

    [11]

    Sarikka T, Ahonen M, Mouginot R, et al. Microstructural, mechanical, and fracture mechanical characterization of SA 508-Alloy 182 dissimilar metal weld in view of mismatch state[J]. International Journal of Pressure Vessels and Piping, 2016, 145: 13 − 22. doi: 10.1016/j.ijpvp.2016.06.004

    [12]

    Dai Q L, Liang Z F, Chen G Q, et al. Explore the mechanism of high fatigue crack propagation rate in fine microstructure of friction stir welded aluminum alloy[J]. Materials Science & Engineering A, 2013, 580: 184 − 190.

    [13] 王磊, 赵新华, 张璐, 等. 力学失配FSW接头拉伸变形的光学原位分析[J]. 焊接学报, 2020, 41(1): 23 − 28.

    Wang Lei, Zhao Xinhua, Zhang Lu, et al. Optical in situ analysis of tensile deformation of mechanically mismatched FSW joints[J]. Transactions of the China Welding Institution, 2020, 41(1): 23 − 28.

    [14]

    Zhou J, Sun Y, Shu H, et al. Effect of laser peening on friction and wear behavior of medical Ti6Al4V alloy[J]. Optics & Laser Technology, 2019, 109: 263 − 269.

    [15]

    Liu H J, Sun J J, Jiang T, et al. Research on rolling contact fatigue of an ultra-high carbon steel[J]. Acta Metall Sinica, 2014, 50(12): 1446 − 1452.

    [16]

    Achintha M, Nowell D, Fufari D, et al. Fatigue behaviour of geometric features subjected to laser shock peening: Experiments and modelling [J]. International Journal of Fatigue, 2014, 62: 171 − 179. doi: 10.1016/j.ijfatigue.2013.04.016

  • 期刊类型引用(19)

    1. 郝晓杰,段成红,罗翔鹏,曹先堃,徐航程,朱宗涛. 不同坡口尺寸6005A铝合金激光-MIG复合焊接微观组织及力学性能研究. 中国激光. 2025(04): 39-48 . 百度学术
    2. 陈超,高义皓,任柏桥,隋昕晨,傅彦. 铝合金激光–电弧复合焊接技术的研究进展. 航空制造技术. 2025(09): 47-60 . 百度学术
    3. 马国龙,张志毅,毛镇东,李刚卿,韩晓辉,杨志斌. 高速列车用铝合金型材激光-MIG复合焊工艺特性和接头性能. 材料导报. 2023(12): 195-200 . 百度学术
    4. 王柏霖. 铝合金焊接工艺在动车组的应用综述. 铝加工. 2023(04): 9-13 . 百度学术
    5. 朱玉麒,郭前建,袁伟,王文华,李飞,杨先海. 高强度双质材料挂车轻量化关键技术综述. 山东理工大学学报(自然科学版). 2022(03): 33-37 . 百度学术
    6. 赵昕,辛志彬,赵函,杨志斌. 铝合金激光-MIG复合焊气孔缺陷影响规律研究. 热加工工艺. 2022(05): 57-60 . 百度学术
    7. 宋坤林,展旭和,徐良,杨海锋,崔辉. 基于固有应变法的激光复合焊车体侧墙焊接变形数值模拟. 机械制造文摘(焊接分册). 2022(02): 30-35+40 . 百度学术
    8. 卢帅,晁艳普,张楚翔,岑辉,曹福来,陈良斌. 激光-TIG复合填丝焊接工艺对6061铝合金焊缝组织与硬度的影响. 制造技术与机床. 2022(12): 121-126 . 百度学术
    9. 张瑜. 焊接速度对车身激光-MIG复合焊接的影响. 现代制造技术与装备. 2022(12): 120-122 . 百度学术
    10. 李帅贞,毛镇东,王鹏,韩晓辉,黄诗铭,杨蔚. 不同焊丝A6082铝合金接头力学及应力腐蚀性能研究. 焊接技术. 2021(01): 73-76 . 百度学术
    11. 王伟,张恒泉,朱宗涛,王晶,李洪玉,张然. 激光功率对Al/Ti激光-GMAW复合熔钎焊接头组织及力学性能的影响. 热加工工艺. 2021(05): 51-54 . 百度学术
    12. 孙晓光,韩晓辉,郑自芹,李帅贞,梁景恒,张中东. 铝合金腐蚀疲劳行为研究. 兵器材料科学与工程. 2021(02): 131-136 . 百度学术
    13. 董石玉,吴凡,陈东东,万祥明,邱哲生,李家奇,严继康. 铝合金激光-电弧复合焊研究进展. 云南冶金. 2021(03): 114-121 . 百度学术
    14. 付娟,赵勇,邹家生,贾占君,贺宇翔. 铝合金非熔化极直流正接氦弧焊氧化膜撕裂机理. 焊接学报. 2021(12): 87-90+102 . 本站查看
    15. 宋坤林,展旭和,徐良,杨海锋,崔辉. 基于固有应变法的激光复合焊车体侧墙焊接变形数值模拟. 焊接. 2021(12): 42-47+52+65-66 . 百度学术
    16. 李斌,朱勇辉,邓林,马彦龙. BS960E高强钢激光-电弧复合高速焊接接头组织及性能研究. 电焊机. 2020(05): 72-76+136-137 . 百度学术
    17. 崔辉,王旭友,徐良,杨海锋,徐富家. 铝合金型材表面氧化膜对焊接接头性能及气孔率的影响. 焊接. 2020(02): 61-64+68 . 百度学术
    18. 石玗,王文楷. 中厚板高效焊接技术的研究进展. 电焊机. 2020(09): 69-78 . 百度学术
    19. 高增,巴现礼,杨环宇,尹聪鑫,牛济泰. 含Sc、Ce、Be的TiB_2原位增强焊丝与4047焊丝对SiCp/AlMMCs的TIG焊研究. 稀有金属材料与工程. 2020(10): 3465-3471 . 百度学术

    其他类型引用(17)

图(9)  /  表(4)
计量
  • 文章访问数:  260
  • HTML全文浏览量:  26
  • PDF下载量:  58
  • 被引次数: 36
出版历程
  • 收稿日期:  2022-05-06
  • 网络出版日期:  2023-04-18
  • 刊出日期:  2023-04-24

目录

    /

    返回文章
    返回