Mechanism of the oxidation film tearing by DCEN-TIG helium welding of aluminum
-
摘要: 采用高速摄影观察了不同气体流量下铝合金非熔化极直流正接氦弧焊焊接过程中电弧的形态及氧化膜撕裂过程. 观察测量结果表明,在试验参数范围内氦气流量的增加减弱了氧化膜的撕裂程度,但提升了焊缝深宽比及电弧能量效率. 氦弧焊阳极产热功率的提升削弱了氧化膜之间的化学键强度,产生了氧化膜撕裂现象. 在静力学平衡方程基础上推导得出了熔池液面与电极所在平面交线的微分方程,解释了熔池液面下凹程度随氦气流量增加而增加的原因,同时熔池中心指向熔池边缘表面张力也随气体流量增加而减小,两种因素共同作用使氧化膜撕裂程度随气体流量增加而减弱.Abstract: Oxidation film tearing under different helium flow during DCEN-TIG welding of aluminum was observed via high-speed photography. The results showed that helium flow reduced the oxidation film tearing, but it increased the deep-to-width ratio of the weld pool and arc energy efficiency. The enhanced power of the positive pole of helium welding weakened the chemical bond of the oxidation film and leaded to the tearing of oxidation film. Based on the static equilibrium equation, differential equation of the intersection line between the surface of molten pool and the electrode plane was derived, which explained that the depression of molten pool increased with the increase of helium flow, and the surface tension from the center to the edge of the molten pool also decreased with the increase of helium flow. Both factors work together to make the tearing degree of oxidation film decreased with the increase of helium flow.
-
Keywords:
- aluminum /
- helium welding /
- oxidation film tearing /
- arc energy efficiency /
- mechanism
-
-
表 1 母材化学成分及含量(质量分数,%)
Table 1 Chemical composition of base metal
Mg Mn Cr Cu Zn Fe Al 4.0 ~ 4.9 0.4 ~ 1.0 0.05 ~ 0.25 0 ~ 0.1 0 ~ 0.25 0 ~ 0.4 余量 表 2 试验主要工艺参数
Table 2 Processing parameters of experiment
焊接速度v/(mm·min−1) 钨针直径
d/mm气体流量
Q/(L·min−1)针尖到工件
距离S/mm焊接电流
I/A300 3.0 10 ~ 20 3 180 -
[1] 周政, 王国庆, 宋建岭, 等. 2219铝合金不同气氛下TIG焊焊接接头组织性能[J]. 焊接学报, 2018, 39(7): 51 − 54. doi: 10.12073/j.hjxb.2018390174 Zhou Zheng, Wang Guoqing, Song Jianling, et al. Microstructure and mechanical properties of 2219 aluminum alloys TIG welding welded joints in different shielding gases[J]. Transactions of the China Welding Institution, 2018, 39(7): 51 − 54. doi: 10.12073/j.hjxb.2018390174
[2] 张志芬, 杨哲, 任文静, 等. 电弧光谱深度挖掘下的铝合金焊接过程状态检测[J]. 焊接学报, 2019, 40(1): 25 − 31. Zhang Zhifen, Yang Zhe, Ren Wenjing, et al. Condition detection in Al alloy welding process based on deep mining of arc spectrum[J]. Transactions of the China Welding Institution, 2019, 40(1): 25 − 31.
[3] 王伟, 王浩, 陈辉, 等. 6N01S-T5铝合金高速激光-MIG复合焊接工艺[J]. 焊接学报, 2019, 40(7): 48 − 54. doi: 10.12073/j.hjxb.2019400180 Wang Wei, Wang Hao, Chen Hui, et al. Investigation on high speed laser-MIG hybrid welding process of 6N01S-T5 aluminum alloy[J]. Transactions of the China Welding Institution, 2019, 40(7): 48 − 54. doi: 10.12073/j.hjxb.2019400180
[4] Jiang Xunyan, Cheng Donghai, Chen Yiping, et al. The superplastic deformation of electron beam welded aluminum lithium alloy[J]. China Welding, 2018, 27(1): 41 − 45.
[5] Zhang Yueying, Sun Daqian, Su Lei, et al. Effect of electrode morphology on steel/aluminum alloy joint[J]. China Welding, 2019, 28(1): 16 − 27.
[6] 朱正行, 杨君仁, 倪纯珍. 钨极氦气保护电弧焊电弧行为的研究[J]. 焊接学报, 1984, 5(1): 37 − 42. Zhu Zhengxing, Yang Junren, Ni Chunzhen. Study on arc behavior of tungsten-helium shielded arc welding[J]. Transactions of the China Welding Institution, 1984, 5(1): 37 − 42.
[7] Saurav Chakraborty, Suvankar Ganguly, Prabal Talukdar. Determination of optimal taper in continuous casting billet mould using thermo-mechanical models of mould and billetl[J]. Journal of Materials Processing Technology, 2019, 270(8): 132-141. [8] Li W, Li J, Zhang Z, et al. Metal flow during friction stir welding of 7075-t651 aluminum alloy[J]. Experimental Mechanics, 2013, 53(9): 1573 − 1582. doi: 10.1007/s11340-013-9760-3
[9] Meng X, Qin G, Zou Z. Sensitivity of driving forces on molten pool behavior and defect formation in high-speed gas tungsten arc welding[J]. International Journal of Heat and Mass Transfer, 2017, 107(4): 1119 − 1128.
[10] Meng X, Qin G, Bai X, et al. Numerical analysis of undercut defect mechanism in high speed gas tungsten arc welding[J]. Journal of materials Processing Technology, 2016, 236(10): 225 − 234.
[11] Mendez P F, Ramirez M A, Trapaga G, et al. Order-of-magnitude scaling of the cathode region in an axisymmetric transferred electric arc[J]. Metallurgical and Materials Transactions B, 2001, 32(3): 547 − 554. doi: 10.1007/s11663-001-0039-1
[12] Mathieu Vermot des Roches, Aïmen E Gheribi, Patrice Chartrand. A versatile multicomponent database for the surface tension of liquid metals[J]. Calphad, 2019, 65(6): 326 − 339.