高级检索

磁控焊缝跟踪传感器非对称纵向磁场下的焊缝识别

秦子濠, 李湘文, 郑学军, 洪波, 李继展, 周芙蓉

秦子濠, 李湘文, 郑学军, 洪波, 李继展, 周芙蓉. 磁控焊缝跟踪传感器非对称纵向磁场下的焊缝识别[J]. 焊接学报, 2023, 44(5): 84-94. DOI: 10.12073/j.hjxb.20220618001
引用本文: 秦子濠, 李湘文, 郑学军, 洪波, 李继展, 周芙蓉. 磁控焊缝跟踪传感器非对称纵向磁场下的焊缝识别[J]. 焊接学报, 2023, 44(5): 84-94. DOI: 10.12073/j.hjxb.20220618001
QIN Zihao, LI Xiangwen, ZHENG Xuejun, HONG Bo, LI Jizhan, ZHOU Furong. Seam recognition by magnetic control seam tracking sensor under asymmetric longitudinal magnetic field[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 84-94. DOI: 10.12073/j.hjxb.20220618001
Citation: QIN Zihao, LI Xiangwen, ZHENG Xuejun, HONG Bo, LI Jizhan, ZHOU Furong. Seam recognition by magnetic control seam tracking sensor under asymmetric longitudinal magnetic field[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 84-94. DOI: 10.12073/j.hjxb.20220618001

磁控焊缝跟踪传感器非对称纵向磁场下的焊缝识别

基金项目: 国家自然科学基金资助项目(11832016,51775471);湖南创新型省建设专项重大标志性创新示范项目(2019XK2303);长沙株洲湘潭标志性工程技术项目(2020GK2014);合肥通用机械研究院有限公司项目(20213ZK)
详细信息
    作者简介:

    秦子濠,硕士研究生;主要研究焊接自动化;Email: 408590165@qq.com

    通讯作者:

    郑学军,教授,博士研究生导师;Email: zhengxuejun@xtu.edu.cn

  • 中图分类号: TG 409

Seam recognition by magnetic control seam tracking sensor under asymmetric longitudinal magnetic field

  • 摘要: 针对纵向磁场作用下的电弧难提取焊缝信息的问题,设计一种由3个纵向分布磁感线圈组成的‘山’形分布纵向磁场传感器. 利用COMSOL软件模拟非对称纵向磁场作用电弧形态. 取焊接过程电弧电压分布对应的磁感应强度作为焊缝识别试验的磁感应强度. 用高速摄影仪拍摄非对称纵向磁场作用下的电弧运动轨迹,并与新型传感器设计的电弧运动轨迹进行比较,验证纵向磁场传感器产生非对称纵向磁场的电弧形态变化. 结果表明,非对称纵向磁场能控制电弧进行焊缝识别,并能解决窄间隙焊接过程中的咬边和侧壁不融合. 该方法为磁控焊缝跟踪传感器在窄间隙焊接的应用开辟了新的方向.
    Abstract: To address the difficulty of extracting welding seam information under the action of a longitudinal magnetic field, a “mountain”-distributed longitudinal magnetic field sensor composed of three longitudinally distributed magnetic induction coils was designed. The arc shape under the action of an asymmetric longitudinal magnetic field was simulated using COMSOL software. The magnetic induction intensity corresponding to the arc voltage distribution during welding was considered the magnetic induction intensity for weld identification experimentation. The arc trajectory under the action of the asymmetric longitudinal magnetic field was photographed with a high-speed camera and compared with the arc trajectory designed by the new sensor to verify changes in the arc shape of the asymmetric longitudinal magnetic field generated by the longitudinal magnetic field sensor. The results show that the asymmetric longitudinal magnetic field can control the arc to identify the weld seam and can solve undercut and sidewall non-fusion in the narrow gap welding process. This method opens a new direction for applying magnetron seam tracking sensors in narrow gap welding.
  • 随着石油和精细化工行业的快速发展,在各类具有严峻腐蚀特性的环境中,如何选择合适的设备材料成为产品制造中的一项重大挑战[1-3]. Inconel 600是一种Ni-Cr-Fe固溶强化合金,国内牌号为N06600,在700 ℃以下具有优良的耐热性和高塑性,其特点是熔点高、耐热、耐腐蚀、强度高,具有良好的抗氧化性能、力学性能和加工性能,因为其良好的耐高温腐蚀性和抗氧化性能,所以常用于制造化工设备和石油化工装备[4-6].

    镍基合金传统的焊接方法有埋弧焊、钨极氩弧焊、焊条电弧焊等[7-9]. TIG对镍基合金焊接应用最为广泛[10],焊接接头组织及性能与工艺参数密切相关. 杨子威等人[11]采用等离子和TIG分别对Inconel 600进行焊接,研究不同焊接方法对其显微组织和力学性能的影响,结果表明焊缝显微硬度均低于母材,TIG接头的硬度低于等离子焊接接头. PAW是在钨极氩弧焊的基础上通过压缩电弧的方法来获得的一种高效焊接方法[12]. TIG自由的电弧具有良好的覆盖能力,添加适当的填充金属,可达到正面成形美观的效果,但焊接时需开坡口,且很难实现单面焊双面成形[13]. PAW + TIG可同时发挥两种焊接方法的优势,将电弧易控制、焊缝成形美观、焊缝质量高、焊接变形小和探伤合格率高等优点体现出来,从而提高生产效率[14]. 文中采用PAW + TIG方法对Inconel 600镍基合金进行焊接,考察了焊缝的微观组织及力学性能,从而为Inconel 600镍基合金的实际生产应用提供有力的理论支撑和参考依据.

    试验选用规格为600 mm × 65 mm × 6 mm的Inconel 600钢板作为试验母材,选用直径为1.0 mm的ERNiCr-3作为TIG填充材料,母材及焊丝的化学成分如表1所示,母材抗拉强度为585 MPa,屈服强度为35 MPa,断后伸长率为20%. 试验所选用的焊接设备为专用PAW + TIG焊机,其焊接示意图如图1(a)所示,Inconel 600板材选用如图1(b)所示焊接坡口, 等离子弧焊枪喷嘴应选择铜制三孔扩散式喷嘴. PAW和TIG焊枪均选择直径为3.2 mm的铈钨极,选用直流正接. PAW + TIG组合焊接时,以PAW打底,填丝TIG紧随其后盖面,依次盖面3次,填充示意图如图1(b)所示.

    表  1  Inconel 600及焊丝ERNiCr-3化学成分(质量分数,%)
    Table  1.  Chemical composition of the Inconel 600 and ERNiCr-3 metal wire
    材料NiCrFeCuMnCSiSPAlTi
    Inconel 60073.4115.987.830.501.000.1500.500.0150.0150.300.3
    ERNiCr-374.7519.581.750.013.220.0210.280.0050.0040.080.3
    下载: 导出CSV 
    | 显示表格
    图  1  Inconel 600 PAW + TIG接头填充示意图
    Figure  1.  Schematic diagram and welding test diagram of Inconel 600 PAW + TIG jionts. (a) PAW + TIG diagram; (b) groove form

    在焊接过程中焊枪固定不动,起弧后焊枪随着焊接平台移动完成焊接,待试板冷却后拍照记录焊缝表面成形,取样、打磨和腐蚀并观察焊缝形貌和焊缝组织,按照 GB/T 228—2002《金属材料室温冲击试验方法》[15]制备焊接接头拉伸试样. 焊接基本工艺参数如表2所示,焊接速度为240 ~ 250 mm/min,保护气采用95%Ar + 5%H2,流速为8 ~ 12 L/min,保护罩Ar气流量为10 ~ 15 L/min.

    表  2  基本工艺参数
    Table  2.  Basic welding process parameters
    层数焊接方法送丝速度
    vf/(cm·min−1)
    焊接电流
    I/A
    电弧电压
    U/V
    1PAW210~25027~29
    3TIG22230~26015~17
    下载: 导出CSV 
    | 显示表格

    Inconel 600镍基合金PAW + TIG焊接接头形貌如图2所示,由图2(a)可知,焊缝呈银白色,焊缝表面成形均匀、光滑,鱼鳞纹均匀分布,未出现明显的夹渣、咬边和未熔合等宏观缺陷. 接头横截面形貌如图2(b)所示,接头呈上大下小的形貌,PAW焊缝和TIG焊缝两部分,且具有清晰的分界线.

    图  2  Inconel 600 PAW + TIG接头形貌
    Figure  2.  Morphology of the Inconel 600 PAW + TIG joint. (a) macroscopic morphology; (b) cross-sectional morphology

    Inconel 600镍基合金PAW + TIG接头微观组织如图3所示,熔合线附近无明显的孔洞和裂纹等缺陷,两者完全熔合. 母材和热影响区的组织为奥氏体,与母材相比,热影响区晶粒的尺寸较大. 焊缝区域的组织为树枝晶,垂直于熔合线生长. Inconel 600镍基合金PAW + TIG接头熔合线EDS线扫描如图4所示,焊缝到母材方向Ni元素含量明显增加、Fe元素含量减少、C元素和Cr元素含量几乎保持不变. 焊缝部位的Ni元素和Fe元素含量之比为3∶1,故判断焊接接头的物相主要为Ni3Fe相. 如图5所示为焊接接头XRD图谱,分析结果表明接头物相主要为FeNi3相,经退火热处理后出现第二相,为γ-(Fe,Ni)化合物,结合图3中SEM可知焊缝处Fe元素、Ni元素形成了固溶体相,并且焊接接头熔合线XRD分析结果与EDS线扫描结果一致.

    图  3  Inconel 600 镍基合金PAW + TIG接头微观组织
    Figure  3.  Cross section of the Inconel 600 PA + TIG joint
    图  4  Inconel 600 PAW + TIG接头元素线扫描分析
    Figure  4.  EDS liner scan of the Inconel 600 PAW + TIG joint. (a) EDS liner scan direction; (b) EDS liner scan 1; (b) EDS liner scan 2
    图  5  Inconel 600 PAW + TIG接头XRD分析
    Figure  5.  XRD analysis of Inconel 600 PAW + TIG joints

    采用维氏显微硬度仪对热处理前后的Inconel 600镍基合金PAW + TIG接头分别进行硬度测量,硬度分布如图6所示,焊接接头硬度分布规律基本一致,焊缝区域硬度最低,热影响区硬度次之,母材硬度最高. 随着焊接热输入的增加,界面的未熔合缺陷在逐渐减少,晶粒的尺寸逐渐增大. 随着晶粒的细化,硬度随之升高. 由于热影响区的晶粒尺寸较母材小,焊缝区域晶粒尺寸较热影响小,故接头的显微硬度分布呈现出该趋势.

    图  6  焊接接头显微硬度分布规律
    Figure  6.  Microhardness distribution of the welded joints

    对焊后试样在700 ℃下保温8 h进行退火试验,通过高温保温退火,有助于晶粒再结晶,使晶粒尺寸重新分布,提高晶界的稳定性,改善材料的力学性能和耐腐蚀性. 图7可以看出两个焊接试样均断裂在Inconel 600镍基合金母材. 通过扫描电镜对Inconel 600镍基合金PAW + TIG接头拉伸断口进行观察. 在图8(b)的局部放大图中可以看出断口由少量韧窝和未熔合孔洞组成,结合文献[16]分析可知接头的断裂形式为韧性断裂. 对退火前后两个试样力学性能进行对比,图9(a)所示为拉伸工程应力—应变曲线,焊接接头的屈服强度为305 MPa,抗拉强度为589 MPa,从图9(b)中可以看出退火后的焊接接头抗拉强度和屈服强度都有所增加,抗拉强度和屈服强度分别达到了632 MPa和311 MPa,较未进行退火的焊接接头抗拉强度提高了7.3%,但是退火试验后的焊接接头断后伸长率有所下降,说明高温退火试验使得焊接接头的塑性降低. 如图10所示,Inconel 600镍基合金PAW + TIG面弯和背弯试样经180°弯曲后,正面和侧面均未发现裂纹、气孔及夹渣等缺陷,Inconel 600镍基合金 PAW + TIG接头的塑性较好.

    图  7  Inconel 600 镍基合金PA + TIG接头拉伸试样
    Figure  7.  Macromorphology of Inconel 600 tensile samples of the Inconel 600 PA + TIG joints
    图  8  Inconel 600 镍基合金PA + TIG接头断口形貌
    Figure  8.  Tensile fracture morphologies of Inconel 600 tensile samples. (a) fracture morphology; (b) a partial enlargement of Fig.8(a)
    图  9  热处理前后接头工程应力—应变曲线与力学性能对比
    Figure  9.  Comparison of stress-strain curves and mechanical properties of the welded joints before and after heat treatment. (a) engineering stress-strain curves; (b) comparison of mechanical properties
    图  10  接头弯曲宏观形貌
    Figure  10.  Macro morphology of the welded joints bend samples

    图11给出了焊缝和母材的位置的电化学腐蚀极化曲线. 通过Tafel外推法拟合曲线,得到了腐蚀电位(Ecorr)、腐蚀电流密度(icorr),计算结果列于表3中. 焊缝区域和母材区域自腐蚀电流密度分别为0.7316 µA/cm20.7399 µA/cm2,焊缝区域自腐蚀电流密度较小,因此认为焊缝处腐蚀速率较母材区域小.焊缝与母材处自腐蚀电位分别为−0.7867 V和−0.3346 V,母材处自腐蚀电位明显高于焊缝处,因此焊缝处更趋向发生电化学反应.

    图  11  焊缝与母材位置极化曲线
    Figure  11.  Polarization curves of weld seam and base metal
    表  3  Tafel拟合的自腐蚀电流密度与自腐蚀电位
    Table  3.  Self corrosion current density and self corrosion potential fitted by Tafel
    位置自腐蚀电流密度
    icorr/(µA·cm−2)
    腐蚀电位
    Ecorr /V
    母材0.73990.334 6
    焊缝0.73160.786 7
    下载: 导出CSV 
    | 显示表格

    图12为Nyquist图与Bode图,图12(a)所示为Nyquist图,显示不完全电容回路,通常由于较大电容回路的样品具有较低的溶解速率和较高的耐腐蚀性,因此母材区域溶解速率较低且耐腐蚀性较好. Bode图如图12(b)所示,阻抗Z的模值在低频范围内表示极化电阻,在低频时相位角较大,这可归因于保护膜的形成,因此可见母材区域易于形成保护膜,降低其腐蚀发生的倾向,导致其腐蚀电位较低.

    图  12  Nyquist图与Bode图
    Figure  12.  Nyquist curves and Bode diagram. (a) Nyquist curves; (b) Bode digram

    图13为母材与焊缝位置经电化学腐蚀后的形貌,可以明显发现母材位置点蚀坑较小,焊缝处明显有较大点蚀坑且相互连接. Cl提供电子给金属表面,促使合金溶解. 局部产生的酸性环境进一步加速金属的腐蚀,导致表面出现小孔洞或凹坑. 这是由于在焊接过程中,在快速冷却的焊接热影响区域,形成析出相以及晶粒边界变化,导致局部腐蚀敏感性增加,从而降低了焊接接头的耐腐蚀性.

    图  13  母材与焊缝位置电化学腐蚀形貌
    Figure  13.  Electrochemical corrosion morphology of base metal and weld seam positions. (a) base material position; (b) weld position

    为研究Inconel 600镍基合金 PAW + TIG接头的耐蚀性,以确保焊接接头在特殊的环境中达到设备的使用要求,因此在100%射线检验合格的焊接接头中部分别取样选择ASTM A262-15[17]中的Practice E和ASTM G28-22[18]中的Method A进行腐蚀试验. ASTM A262-15[17]为奥氏体不锈钢抗晶间腐蚀的试验方法,Practice E为铜-硫酸铜-16%硫酸试验用于检测晶间腐蚀敏感性,ASTM G28-22[18]为富镍铬合金抗晶间腐蚀的试验方法,Method A为硫酸铁-硫酸试验. 采用扫描电镜对焊接接头的晶间腐蚀进行SEM形貌进行观察,如图14所示,可以看出整个接头腐蚀形貌仅存在凹凸不平的相,在晶界部位未发现晶间腐蚀的现象.

    图  14  Inconel 600合金PA + TIG接头晶间腐蚀SEM
    Figure  14.  Corrosion SEM image of Inconel 600 PA + TIG joint

    经退火处理后焊接接头析出δ相的TEM图像如图15所示,通过TEM可以清楚地观测到有δ相析出且分布较为密集. 在退火处理的过程中,Inconel 600镍基合金晶体结构发生变化,形成新的δ相. δ相的出现会影响材料的硬度、强度和塑性. 高温退火后δ相的出现导致了焊接接头的抗拉强度以及屈服强度的增加,与图9(a)中所描述的结果一致. 晶粒内孪晶的对称性为δ相的析出提供了有利的条件. 结合文献[19]可知,在保温过程中,随着时间的推移,δ相逐渐从基体中分离出来,而空洞则逐渐合并形成裂纹.

    图  15  退火处理后焊接接头析出δ相的TEM显微图像
    Figure  15.  Precipitation in welded joints after annealing treatment TEM micrographs of δ phases

    退火过程中的微观结构示意图如图16所示. 在退火过程中,随着温度的升高,γ״强化相逐渐拉长和粗化,最终演变成为针状的δ相. 结合文献[20]可知,针状的δ相在晶粒内部的析出不仅影响了晶体的力学性能,还在晶界和孪晶界处作为物理障碍阻碍了晶界的移动,从而形成了一定的强化效应,因此退火中γ״强化相和δ相的形成及演变抑制了晶粒的长大,同时还影响了材料的整体性能.

    图  16  退火过程中微观结构转变示意图
    Figure  16.  Schematic diagram of the microstructure changes during annealing. (a) γ״ phases growth; (b) δ phases growth

    (1) 采用PAW + TIG方法可实现厚度为6 mm的Inconel 600镍基合金的有效焊接,焊缝表面成形光滑平齐,半椭圆状的鱼鳞纹均匀分布.

    (2) 焊缝分为PAW焊缝和TIG焊缝两部分,且具有清晰的分界线. 母材和热影响区的组织均为等轴晶奥氏体,但热影响区晶粒的尺寸比母材大,焊缝区域的组织为树枝晶,该部位金属间化合物为Ni3Fe相.

    (3) 退火后的焊接接头抗拉强度和屈服强度都有所增加,较未进行退火的焊接接头抗拉强度提高了7.3%,退火后的焊接接头断后伸长率有所下降,说明高温退火试验使得焊接接头的塑性降低.

  • 图  1   纵向磁控传感器

    Figure  1.   Longitudinal magnetic control sensor. (a) physical image of sensor; (b) sensor interior diagram; (c) sensor size diagram

    图  2   磁控传感器磁感线分布

    Figure  2.   Magnetic field line distribution of magnetic control sensor

    图  3   z方向磁感应强度曲线分布

    Figure  3.   Distribution of magnetic induction intensity curve in Z direction

    图  4   电弧模型

    Figure  4.   Arc model. (a) arc calculation domain division; (b) arc grid division

    图  5   不同磁场强度下电弧温度分布

    Figure  5.   Arc temperature distribution under different magnetic field strength. (a) no magnetic field; (b) cross section temperature without magnetic field; (c) symmetrical longitudinal magnetic field; (d) cross section temperature under symmetrical longitudinal magnetic field; (e) asymmetric longitudinal magnetic field; (f) cross section temperature under asymmetric longitudinal magnetic field

    图  6   纵向磁场下电弧电压

    Figure  6.   Arc voltage under longitudinal magnetic field

    图  7   纵向磁场下电弧电压差值

    Figure  7.   Arc voltage difference under longitudinal magnetic field

    图  8   纵向磁控传感器电弧实验平台

    Figure  8.   Arc experimental platform of longitudinal magnetic control sensor

    图  9   纵向磁场作用下的电弧形态

    Figure  9.   Arc shape under longitudinal magnetic field. (a) no magnetic field; (b) symmetrical longitudinal magnetic field; (c) asymmetrical longitudinal magnetic field

    图  10   横向磁场作用下的电弧形态

    Figure  10.   Arc shape under the action of transverse magnetic field. (a) arc left deviation; (b) arc alignment; (c) arc right deviation

    图  11   V形坡口焊缝识别实验流程图

    Figure  11.   Flow chart of V-groove weld identification experiment

    图  12   V形坡口上焊缝路径

    Figure  12.   Weld path on V-groove

    图  13   纵向磁场下V形坡口焊缝电弧电压

    Figure  13.   Arc voltage of V-groove weld under longitudinasl magnetic field. (a) left weld; (b) center weld; (c) right weld

    图  14   横向磁场下V形坡口焊缝电弧电压

    Figure  14.   Arc voltage of V-groove weld under transverse magnetic field. (a) left weld; (b) center weld; (c) right weld

    图  15   窄间隙焊缝不同磁场作用下的电弧温度分布

    Figure  15.   Arc temperature distribution of narrow gap weld under different magnetic fields. (a) no magnetic field; (b) longitudinal magnetic field; (c) transverse magnetic field

    图  16   为窄间隙焊缝不同磁场作用下的焊缝轮廓线

    Figure  16.   Shows the weld profile of narrow gap weld under different magnetic fields. (a) no magnetic field; (b) longitudinal magnetic field; (c) tromsverse magnetic field

    表  1   传感器参数尺寸

    Table  1   Sensor parameter size

    中间线圈直径
    B1/cm
    左、右线圈直径
    B2/cm
    左、右线圈中轴线距离
    a/cm
    钨极尖端到下端面距离
    c/cm
    线圈高度
    h/cm
    钨极直径
    d/cm
    3 1 6 1 8 0.32
    下载: 导出CSV

    表  2   电弧的边界条件

    Table  2   Boundary conditions of arc

    边界速度v/(m·s−1)压强p/Pa温度T/K电势Φ/V磁矢势A(Wb·m−1)
    AB293I/(πR2)A/∂n= 0
    ABI1 000Φ/∂n=0A/∂n= 0
    BCDGHAI101 3253 000Φ/∂n=0A/∂n= 0
    HA和BC0.86293Φ/∂n=0A/∂n= 0
    EF293Φ/∂n=0A/∂n= 0
    下载: 导出CSV
  • [1]

    Kiryukhantsev-Korneev P V. Pulsed magnetron sputtering of ceramic SHS targets as a promising technique for deposition of multifunctional coatings[J]. Protection of Metals and Physical Chemistry of Surfaces, 2020, 56(2): 343 − 357. doi: 10.1134/S2070205120020124

    [2]

    Sun Z, Guo M, Vleugels J, et al. Strong static magnetic field processing of metallic materials: A review[J]. Current Opinion in Solid State & Materials Science, 2012, 16(5): 254 − 267.

    [3]

    Yu J, Du D, Ren Z, et al. Influence of an axial magnetic field on microstructures and alignment in directionally solidified Ni-based superalloy[J]. ISIJ International, 2017, 57(2): 337 − 342. doi: 10.2355/isijinternational.ISIJINT-2016-352

    [4]

    Muyskens S M, Eddir T I, Goldstein R C. Improving induction tube welding system performance using soft magnetic composites[J]. Compel-the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2020, 39(1): 185 − 191.

    [5]

    Brown D C. The effect of electromagnetic stirring and mechanical vibration[J]. Welding Journal, 1962, 41(2): 241 − 250.

    [6] 曾松盛, 石永华, 王国荣. 基于电弧传感器的焊缝跟踪技术现状与展望[J]. 焊接技术, 2008, 37(2): 1-5.

    Zeng Songsheng, Shi Yonghua, Wang Guorong. Current situation and prospect of weld tracking technology based on arc sensor [J] Welding Technique, 2008, 37(2): 1-5.

    [7]

    Wang J, Sun Q, Feng J, et al. Characteristics of welding and arc pressure in TIG narrow gap welding using novel magnetic arc oscillation[J]. The International Journal of Advanced Manufacturing Technology, 2017(90): 413 − 420.

    [8]

    Chen J, Zhang Y, Wu C, et al. Suppression of undercut defects in high-speed GMAW through a compound magnetic field[J]. Journal of Materials Processing Technology, 2019, 274: 116288. doi: 10.1016/j.jmatprotec.2019.116288

    [9]

    Matsumoto N, Kuno I, Yamamoto T, et al. Arc behavior in non-uniform AC magnetic field[J]. ISIJ International, 2012, 52(3): 488 − 492. doi: 10.2355/isijinternational.52.488

    [10] 洪波, 魏复理, 来鑫, 等. 一种用于焊缝跟踪的磁控电弧传感器[J]. 焊接学报, 2008, 29(5): 4 − 7.

    Hong Bo, Wei Fuli, Lai Xin, et al. A magnetic-control arc sensor for seam-tracking[J]. Transactions of the China Welding Institution, 2008, 29(5): 4 − 7.

    [11]

    Wienecke R, Naturforsch Z. The characters of arc in a longitudinal magnetic field[J]. Applied Physics, 1963, 57(3): 1151 − 1154.

    [12]

    Yin X, Gou J, Zhang J, et al. Numerical study of arc plasmas and weld pools for GTAW with applied axial magnetic fields[J]. Journal of Physics D Applied Physics, 2012, 45(28): 285203 − 285215. doi: 10.1134/S0018151X17050182

    [13] 殷咸青, 罗键, 李海刚. 纵向磁场参数对LD10CS铝合金TIG焊焊缝组织的影响[J]. 西安交通大学学报, 1999(7): 73 − 76.

    Yin Xianqing, Luo Jian, Li Haigang. Effect of magnetic parameters and mechanical properties on grain refining in LD10CS aluminum alloy weld with magnetic stirring[J]. Journal of Xi'an Jiaotong University, 1999(7): 73 − 76.

    [14]

    Liu Y, Sun Q, Wang H, et al. Effect of the axial external magnetic field on copper/aluminium arc weld joining[J]. Science & Technology of Welding & Joining, 2016, 21(6): 460 − 465.

    [15]

    Urusova R M, Urusova I R. Numerical simulation of the screw shape of an electric arc in an external axial magnetic field[J]. High Temperature, 2017, 55(5): 643 − 649. doi: 10.1088/0022-3727/45/28/285203

    [16]

    Zou X, Gong Y, Liu J, et al. The effect of external magnetic field, current and arc column radius on the arc helical instability[J]. Acta Physica Sinica, 2004, 53(3): 824 − 828. doi: 10.7498/aps.53.824

    [17] 刘一搏, 张鸿名, 孙清洁, 等. 磁场作用下铝/钢CMT焊接温度场及熔池流动行为[J]. 机械工程学报, 2018, 54(2): 62 − 68. doi: 10.3901/JME.2018.02.062

    Liu Yibo, Zhang Hongming, Sun Qingjie, et al. Temperature field and molten pool flow behavior of aluminum / steel CMT welding under magnetic field[J]. Journal of Mechanical Engineering, 2018, 54(2): 62 − 68. doi: 10.3901/JME.2018.02.062

    [18] 高延峰, 吴东. 侧向风场作用下横向焊接旋转电弧传感及焊缝跟踪[J]. 焊接学报, 2018, 39(4): 36 − 40. doi: 10.12073/j.hjxb.2018390091

    Gao Yanfeng, Wu Dong. Transverse welding rotating arc sensing and weld tracking under lateral wind field[J]. Transactions of the China Welding Institution, 2018, 39(4): 36 − 40. doi: 10.12073/j.hjxb.2018390091

    [19] 王猛, 吕晓春, 梁晓梅, 等. 窄间隙 TIG 横焊侧壁熔合行为[J]. 焊接学报, 2016, 37(6): 118 − 123.

    Wang Meng, Lyu Xiaochun, Liang Xiaomei, et al. Sidewall fusion behavior of narrow gap TIG transverse welding[J]. Transactions of the China Welding Institution, 2016, 37(6): 118 − 123.

  • 期刊类型引用(1)

    1. 王文楷,石玗,张刚,李春凯,朱明,徐睦忠,代锋先,许有伟. 基于激光视觉检测的焊缝轨迹离线规划. 电焊机. 2023(09): 55-60 . 百度学术

    其他类型引用(1)

图(16)  /  表(2)
计量
  • 文章访问数:  248
  • HTML全文浏览量:  34
  • PDF下载量:  65
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-06-17
  • 网络出版日期:  2023-04-27
  • 刊出日期:  2023-05-24

目录

/

返回文章
返回