X80管线钢焊接接头氢分布的数值模拟
Numerical simulation of hydrogen distribution in welded joint of X80 pipeline steel
-
摘要: 利用ABAQUS有限元软件,建立了三维有限元模型,对X80管线钢焊接接头的氢扩散行为进行了模拟. 通过对不同焊接条件下温度场、应力场、氢扩散的三场耦合模拟,研究了焊接工艺参数对焊接接头中氢扩散及分布的影响. 结果表明,焊接热影响区残余应力水平最高,是整个接头的应力集中部位,也是焊接接头中的富氢地带. 适当地提高预热温度和焊接热输入,均有利于焊接接头中氢的扩散逸出,降低氢在焊接热影响区的聚集程度,从而降低氢致裂纹的敏感性.Abstract: Three-dimensional model was established to simulate the transient hydrogen diffusion for X80 pipeline steel welded joint using ABAQUS finite element software. Based on the coupled thermo-mechanical-diffusion analyses under various welding conditions, the effects of welding parameters on the hydrogen diffusion behavior and distribution pattern were investigated. Simulation results indicate that the heat-affected zone with stress concentration was the part with both high-level residual stress and high hydrogen concentration in the welded joint. Increasing preheating temperature and heat input was favorable for hydrogen to diffuse out from the weld zone and effective in reducing hydrogen concentration in the heat-affected zone, which would reduce the susceptibility to hydrogen induced cracking.
-
Keywords:
- hydrogen diffusion /
- temperature filed /
- stress field
-
-
[1] Fulvio, Douglas G, Stalheim J, et al. Modern high strength steels for oil and gas transmission pipelines[C]// Proceedings of IPC 2008, Calgary Alberta Canada, 2008. [2] Elboujdaini M, Revie R W. Metallurgical factors in stress corrosion cracking (SCC) and hydrogen-induced cracking (HIC)[J]. Journal of Solid State Electrochemistry, 2009, 13(7): 1091-1099. [3] Beidokhti B, Dolati A, Koukabi A H. Effects of alloying elements and microstructure on the susceptibility of the welded HSLA steel to hydrogen-induced cracking and sulfide stress cracking[J]. Materials Science and Engineering A, 2009, 507(1/2): 167-173. [4] Danielson M J. Use of the devanathan-stachurski cell to measure hydrogen permeation in aluminum alloys[J]. Corrosion Science, 2002, 44(4): 829-840. [5] 张显辉, 谭长瑛, 陈佩寅. 焊接接头氢扩散数值模拟(Ⅰ)[J]. 焊接学报, 2000, 21(3): 51-54. Zhang Xianhui, Tan Changying, Chen Peiyin. Numerical simulation of hydrogen diffusion in welded joint[J].Transactions of the China Welding Institute, 2000, 21(3): 51-54. [6] Goldak, J A, Akhlaghi M. Computational welding mechanics[M]. New York: Spinger Science+Business Media, Inc., 2005. [7] Krom A H M, Koers R W J, Bakker A. Hydrogen transport near a blunting crack tip[J]. Journal of the Mechanics and Physics of Solids, 1999, 47(4): 971-992. [8] Park G T, Koh S U, Jung H G, et al. Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of linepipe steel[J]. Corrosion Science, 2008, 50(7): 1865-1871. [9] Arafin M A, Szpunar J A. Effect of bainiticmicrostructure on the susceptibility of pipeline steels to hydrogen induced cracking[J]. Materials Science and Engineering A, 2011, 528(15): 4927-4940. [10] Padhy G K, Ramasubbu V, Murugesan N, et al. Effect of preheat and post-heating on diffusible hydrogen content of welds[J]. Science and Technology of Welding and Joining, 2012, 17(5): 408-413. -
期刊类型引用(7)
1. 白云龙,冷冰,韦博鑫,董立谨,于长坤,许进,孙成. 掺氢天然气管材及焊缝的氢损伤行为研究进展. 中国腐蚀与防护学报. 2025(02): 283-295 . 百度学术
2. 孟不凡,赵建平. X80钢补焊残余应力影响下的氢扩散模拟. 电焊机. 2023(06): 83-91 . 百度学术
3. 刘雪,钟史放,徐连勇,赵雷,韩永典. 不同应力幅下X65管线钢焊接接头的腐蚀疲劳行为. 焊接学报. 2023(07): 24-31+78+130 . 本站查看
4. 薛钢. 基于Mises屈服准则和I_1断裂准则的焊接接头力学特性分析. 材料开发与应用. 2022(05): 1-10 . 百度学术
5. 田万鹏. 基于SYSWELD的X80管线钢焊接接头温度场的数值模拟. 机械工程师. 2020(12): 70-72 . 百度学术
6. 张根树,张颖. 2.25Cr1Mo0.25V钢非拘束焊接接头焊后热处理. 一重技术. 2018(02): 44-47+60 . 百度学术
7. 赵朋成,刘振伟,王璐璐,高世一,王振民. X65管线钢管闪光对焊工艺参数对焊接接头力学性能和缺陷的影响. 材料导报. 2017(20): 87-91 . 百度学术
其他类型引用(7)
计量
- 文章访问数: 283
- HTML全文浏览量: 4
- PDF下载量: 199
- 被引次数: 14