高级检索

铝/钢异种金属焊接接头腐蚀行为及其影响因素综述

徐灏, 曹睿, 樊丁

徐灏, 曹睿, 樊丁. 铝/钢异种金属焊接接头腐蚀行为及其影响因素综述[J]. 焊接学报, 2024, 45(7): 116-128. DOI: 10.12073/j.hjxb.20230718001
引用本文: 徐灏, 曹睿, 樊丁. 铝/钢异种金属焊接接头腐蚀行为及其影响因素综述[J]. 焊接学报, 2024, 45(7): 116-128. DOI: 10.12073/j.hjxb.20230718001
XU Hao, CAO Rui, FAN Ding. Corrosion behavior of aluminum/steel dissimilar metal welded joints and influential factors: A review[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(7): 116-128. DOI: 10.12073/j.hjxb.20230718001
Citation: XU Hao, CAO Rui, FAN Ding. Corrosion behavior of aluminum/steel dissimilar metal welded joints and influential factors: A review[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(7): 116-128. DOI: 10.12073/j.hjxb.20230718001

铝/钢异种金属焊接接头腐蚀行为及其影响因素综述

基金项目: 国家自然科学基金资助项目(52175325),甘肃省科技重大专项资助项目(22ZD6GA008)
详细信息
    作者简介:

    徐灏,博士研究生;主要从事异种金属焊接接头腐蚀行为的研究;Email: xuhao_xhao@163.com

    通讯作者:

    曹睿,教授,博士生导师;主要从事新材料、异种材料的焊接性,腐蚀损伤及断裂行为等研究;Email: caorui@lut.edu.cn.

  • 中图分类号: TG 457.1

Corrosion behavior of aluminum/steel dissimilar metal welded joints and influential factors: A review

  • 摘要:

    铝/钢异种金属焊接接头结合了两种材料优异的性能,在各行各业具有较为广泛的应用.由于铝、钢两种金属之间理化性能的巨大差异以及极小的固溶度,导致铝/钢接头容易出现脆性金属间化合物、气孔等缺陷,严重影响着接头的力学性能.然而,随着铝/钢接头越来越广的应用范围和复杂多样的应用环境,接头的耐腐蚀性能也得到了更多的关注. 对近些年铝/钢异种金属焊接接头的耐腐蚀方面研究工作做了系统的汇总,旨在从接头腐蚀机理出发,提升接头的耐腐蚀性. 综述了接头腐蚀形式规律,并从焊接工艺、腐蚀环境、微观组织和金属间化合物等影响因素的角度出发,详细地讨论了腐蚀行为与各因素之间的关系及影响机理.同时,指出了接头腐蚀机理,从各影响因素方面提出了改善接头耐腐蚀性能的措施,减小铝/钢接头实际服役过程中腐蚀所带来的影响.

    Abstract:

    Aluminum/steel dissimilar metal welded joints combine the excellent properties of the two materials and have a wide range of applications in various industries. Due to the great difference in physical, chemical properties and the extremely small solid solubility between aluminum and steel. Aluminum/steel joints are prone to defects such as brittle intermetallic compounds and pores, which seriously affect the mechanical properties of the joints. However, the corrosion resistance of aluminum/steel joints has also received more attention with the increasing applicate and complex applicate environments. This paper systematically summarizes the research work on the corrosion behavior of aluminum/steel dissimilar metal welded joints in recent years, aiming to improve the corrosion resistance of joints based on the corrosion mechanism. This paper summarizes the joint corrosion forms, and discusses the relationship and influence mechanism between corrosion behavior and various factors such as welding process, corrosion environment, microstructure and intermetallic compounds. At the same time, the corrosion mechanism of the joint is pointed out, and the measures to improve the corrosion resistance of the joint are put forward from the aspects of various influencing factors, so as to reduce the influence of corrosion in the actual service process of the aluminum/steel joint as much as possible.

  • 汽车轻量化是当今汽车制造业关注的热点. 高强钢已成为一种汽车轻量化广泛使用的材料[1-3]. 电阻点焊是高强钢板材主要连接方式之一,但存在应力集中及疲劳性能差的弱点[4-5]. 然而胶接点焊作为一种新型复合连接技术,能够改善应力分布,提高接头的剥离强度,也避免了粘接接头因受冲击发生脆性断裂所带来的危险性,具有广泛的应用前景[6-7].

    针对胶接点焊过程中存在的问题国内外学者开展了大量研究. 孙海涛等人[8-9]通过对比分析双相钢胶接点焊与电阻点焊接头力学性能,发现制定胶接点焊电流时应比电阻点焊偏低. 常保华等人[10]采用弹塑性有限元分析方法,对高、低弹性模量胶接剂的胶接点焊接头强度开展研究,发现随着焊点间距增大两种接头的强度均降低. Xu等人[11]研究表明大搭接宽度的胶接点焊接头静力学性能优于小搭接宽度的胶接点焊接头. 游敏等人[12]通过建立弹塑性胶接点焊接头的有限元模型,发现胶层的弹性模量对接头强度影响较大,建议采用弹性模量适中的胶接剂. Khan等人[13]采用Box-Behnken Design(BBD)方法设计6061铝合金胶接点焊的响应面试验,研究了焊接时间、焊接电流、电极压力及其交互作用对接头力学性能的影响,借助响应面模型得到了最优工艺参数组合. 张龙等人[14]对比分析了钛合金胶接点焊和电阻点焊接头的力学性能,发现小电流情况下胶接点焊接头强度不足,熔核区断口呈韧性断裂特征;大电流情况下,接头强度较高,呈现出韧性断裂与准解理断裂特征. 然而,国内外学者综合考虑多个参数来优化高强钢胶接点焊工艺并分析能量吸收值和失效载荷与断裂形式关系的文章鲜有报道.

    采用BBD试验设计法,开展DP780高强钢胶接点焊工艺试验,并建立高强钢胶接点焊能量吸收值、失效载荷预测模型,针对焊接电流、焊接时间、电极压力及其交互作用对能量吸收值以及失效载荷的影响进行研究,并因此确定胶接点焊工艺的最优参数,借助扫描电子显微镜对胶接点焊接头的断口失效形貌进行分析.

    胶接点焊工艺试验材料采用1.2 mm厚的DP780高强钢,其化学成分如表1所示,试件尺寸为100 mm×25 mm×1.2 mm. 试件的搭接区域尺寸为25 mm × 25 mm,胶接点焊搭接试样如图1所示. 试验采用中频逆变直流点焊机. 试验前先用砂纸对板材进行打磨,后用无水乙醇进行清洗. 采用透胶胶接点焊工艺,借助胶接点焊搭接夹具进行涂胶,保持胶层厚度为0.2 mm. 待完成焊接后,将焊接试件放入25 ℃恒温箱中固化24 h. 试验中使用的胶接剂为DP460环氧树脂.

    表  1  DP780高强钢的化学成分(质量分数,%)
    Table  1.  Chemical compositions of DP780 high strength steel
    CSiMnPCrNiAlCuFe
    0.20.241.910.0190.20.0240.0380.026余量
    下载: 导出CSV 
    | 显示表格
    图  1  试件的尺寸及形状(mm)
    Figure  1.  Size and shape of the specimen

    借助MTS电液伺服材料试验机对固化后的焊接试件进行准静态拉伸试验,获得不同参数下接头的载荷位移曲线. 在试件两端贴上25 mm × 25 mm ×1.2 mm的DP780高强钢垫片,以防止拉伸过程中产生扭矩. 为保证试验的准确性以及避免人为因素引起的误差,每组参数下进行5次试验. 接头的拉伸速率设置为5 mm/min.

    试验采用BBD方法设计试验方案,以焊接电流X1、焊接时间X2、电极压力X3及各因素间交互作用为影响因素,接头的能量吸收值E(即接头载荷-位移曲线中载荷对位移的积分)、失效载荷Y为预测目标值,在进行胶接点焊的预试验后,确定如表2所示的各因素水平及范围. 试验方案及结果如表3所示.

    表  2  因素水平及范围
    Table  2.  Factor level and scope
    因素编码值焊接电流
    I/kA
    焊接时间
    t/ms
    电极压力
    p/MPa
    X1X2X3
    −1 7 100 0.3
    0 8 125 0.35
    1 9 150 0.4
    下载: 导出CSV 
    | 显示表格
    表  3  试验方案及结果
    Table  3.  Test scheme and results
    组号焊接电流 I/kA焊接时间 t/ms电极压力 p/MPa能量吸收值 E/J失效载荷 Y/N
    171250.435.6515 638
    281000.434.2914 648
    381500.395.9017 570
    481250.3567.7716 050
    591250.464.4716 245
    691250.355.5515 823
    791500.3585.6617 400
    891250.390.0916 744
    971000.3541.3316 244
    1081000.349.2515 708
    1191000.3552.8115 545
    1281500.479.9216 385
    1381250.3563.3515 513
    1481250.3558.4515 605
    1571250.335.2115 682
    下载: 导出CSV 
    | 显示表格

    设定显著性水平为0.05,对试验数据采用最小二乘法进行回归方程拟合,通过方差分析检验模型的显著性,保留所有的单因素以及显著性较强的交互作用,对回归方程进行优化,优化后的结果如下

    $$ \begin{aligned} E = 64.13 + 15.66{X_1} + 17.42{X_2} - 7.02{X_3} - 6.51{X_1}{X_3} - 6.54{X_1}^2 \end{aligned} $$ (1)
    $$ \begin{aligned} Y =16\;053.33 + 318.37{X_1} + 629.12{X_2} - 348.50{X_3} + 569{X_1}{X_2} \end{aligned} $$ (2)

    其中式(1)为能量吸收值优化模型,式(2)为失效载荷优化模型. 表4为所得模型方差分析.(Prob > F) < 0.05时,认为该指标显著. 从 表4可以看出,能量吸收值、失效载荷两模型显著性高,回归方程能够很好的拟合真实曲面. 此外,单因素对能量吸收值影响程度分别为:焊接时间最为显著,焊接电流次之,电极压力影响最小. 单因素对接头失效载荷影响显著程度分别为:焊接时间影响最为显著,电极压力次之,焊接电流影响最弱.

    表  4  方差分析
    Table  4.  Variance analysis
    响应值因素平方和 Ss自由度 df均方差 MSFProb > F
    能量吸收值 模型 5 112.48 4 1 022.50 14.64 0.000 4
    X1 1 962.20 1 1 962.20 28.09 0.000 5
    X2 2 427.30 1 2 427.30 34.74 0.000 2
    X3 393.68 1 393.68 5.63 0.041 6
    X1X3 169.78 1 169.78 2.43 0.153 5
    X12 159.52 1 159.52 2.28 0.165 1
    失拟项 827.85 8 103.45 4.76 0.221 8
    失效载荷 模型 6.244 × 106 4 1.561 × 106 8.98 0.002 4
    X1 8.109 × 105 1 8.109 × 105 4.66 0.056 2
    X2 3.166 × 106 1 3.166 × 106 18.21 0.001 6
    X3 9.716 × 105 1 9.716 × 105 5.59 0.039 7
    X1X2 1.295 × 106 1 1.295 × 106 7.45 0.021 2
    失拟项 1.574 × 106 8 1.968 × 105 2.39 0.328 8
    下载: 导出CSV 
    | 显示表格

    胶接点焊接头的静力学性能与焊点质量和粘接质量都有密切关系,要优化胶接点焊工艺参数仅考虑接头的失效载荷是不全面的. 因此以能量吸收值为最大目标,失效载荷设置一个较大的目标值,以此为目标对响应面模型进行最优计算,响应面模型所得的最优工艺参数为:焊接电流9 kA、焊接时间150 ms、电极压力0.3 MPa. 在试验过程中发现,发生飞溅的接头,其失效位移和能量吸收值明显降低,因此会对接头的力学性能造成负面影响. 在前述分析中,焊接时间对能量吸收值影响最为显著,而对失效载荷影响最弱,因此为优化胶接点焊工艺参数,应先保证在较长焊接时间的前提下尽量增大焊接电流. 经过多次焊接试验发现,当焊接电流降至8 kA时接头不发生飞溅,最终确定最优工艺参数为8 kA、焊接时间150 ms、电极压力0.3 MPa.

    对得到的胶焊工艺参数进行试验验证,借助MTS型材料试验机测试该组接头的力学性能并计算其能量吸收值,对试验结果的平均值进行计算,5个胶接点焊接头失效模式均为焊核拔出. 试验结果为:能量吸收值93.22 J、失效载荷17 688.46 N. 该组参数下多元回归方程预测值为:能量吸收值88.57 J、失效载荷17 030.96 N. 验证试验的实测值与能量吸收值、失效载荷模型预测值误差分别为4.99%,3.72%. 验证试验结果表明,非线性多元回归模型与实际拟合良好,因此通过模型来预测接头的能量吸收值和失效载荷并对胶接点焊工艺参数进行优化是可行的.

    能量吸收值是失效载荷和失效位移的综合评价标准,为拉剪过程中载荷对位移的积分,可以很好的反映接头的缓冲吸震能力. 图2为单因素及交互作用对能量吸收值的影响规律. 由图2a可知,能量吸收值随焊接电流、焊接时间的增大而增加,但随着焊接电流的继续增加,接头的缓冲吸震能力增幅逐渐减小. 这是由于焊接时间的延长以及在焊接电流增值较小时均有利于热输入量的增加,进而接头强度和失效位移均增加,但在实际焊接过程中,随着焊接电流的进一步增大,焊接中出现飞溅,虽然发生飞溅的接头在强度上有所提高,但接头的失效位移会因此减小,导致接头缓冲吸震能力增长缓慢. 电极压力对接头能量吸收值的影响呈负相关性,在焊接过程中发现,在较大的电极压力下进行胶接点焊会加剧胶层从板材边缘的流出,致使胶层实际厚度减小,造成接头的能量吸收值降低. 当焊接时间为125 ms时,焊接电流与电极压力对能量吸收值的交互影响如图2b所示. 由图2b可以看出,大焊接电流搭配小电极压力可以得到缓冲吸震最优的接头且等高线图左下角等高线最为稠密,说明在电极压力较小时,增大焊接电流可以得到接头能量吸收值的显著提高. 当焊接电流较小时,电极压力的改变对能量吸收值的提高影响不显著,此参数组合在焊接过程中不能获得力学性能较优的接头. 反之,当焊接电流大于8 kA时,电极压力的改变对能量吸收值的提高影响逐渐显著. 考虑到这两项因素的交互作用影响,为得到能量吸收值较优接头应同时减小电极压力并增大焊接电流.

    图  2  单因素及交互作用对能量吸收值的影响
    Figure  2.  Effect of single factor and interaction on energy absorption value. (a) single factor; (b) interaction

    图3为单因素及交互作用对失效载荷的影响. 由图3a可知,焊接电流和焊接时间对失效载荷的影响呈正相关性,电极压力对失效载荷的影响呈负相关性. 在一定范围内,焊接电流和焊接时间的增大导致了热输入量的增加,促使熔核的快速成形. 随着电极压力的增加,电极与试件之间的接触面积也逐渐增大,引起接触电阻和电流密度减小,导致热输入量减小. 此外,在实际操作中发现在较大的电极压力下进行胶接点焊,板材容易发生翘曲变形,减弱接头的力学性能. 将电极压力固定在0.35 MPa,焊接电流与焊接时间对失效载荷的交互影响如图3b所示. 当焊接时间为100 ~ 110 ms时,失效载荷随焊接电流的增大而缓慢减小,而当焊接电流为7 ~ 8 kA,接头的失效载荷随焊接时间的延长而缓慢增加. 然而失效载荷沿右上顶角陡增,即在焊接时间大于130 ms时,同时延长焊接时间和增大焊接电流可直接获得较优的力学性能接头,但并不是越大的焊接电流与焊接时间对提高接头力学性能更有利,由于胶接剂的存在,在焊接时接触电阻较大,过大的焊接电流与焊接时间将引起高热量迅速聚集,引起熔核内部的部分金属液被带走,产生飞溅. 综上,为提高接头的失效载荷,应在不产生飞溅的前提下尽可能使用大焊接电流与长焊接时间组合.

    图  3  单因素及交互作用对失效载荷的影响
    Figure  3.  Effect of single factor and interaction on failure load. (a) single factor; (b) interaction

    对15组工艺参数组合下的胶接点焊试件进行拉伸-剪切试验后,发现第3,4,5,10,11,12,13,14组接头发生焊核拔出失效,第1,2,6,9,15组接头失效形式为界面撕裂,其余两组在焊接过程中发生飞溅. 通过对比焊核拔出和界面撕裂两类失效形式接头的能量吸收值和失效载荷,可见失效形式为焊核拔出接头的能量吸收值、失效载荷普遍大于界面撕裂接头. 为辨析其原因,借助扫描电子显微镜对两种失效形式的断口进行扫描电镜(SEM)试验,分析接头断裂类型和原因.

    图4为第3组接头的断口宏观与微观放大形貌.可以观察到,图4中各区域均分布大量且大小不等的圆形或椭圆形韧窝. A区域为熔核开始断裂处,该区域韧窝开口未发生明显改变,裂纹沿热影响区扩展到B区域,但B区域韧窝沿应力方向被拉长且开口具有一定方向性,说明区域A在断裂时受正应力作用,B区域在断裂过程中结合面与拉剪力存在一定角度,熔核发生偏转. C区域中韧窝周边还存在凸起的撕裂棱,但没有解理台阶,撕裂棱均匀细致. 图4中各区域断口表现出典型的韧性断裂特征. 综上所述,该种失效形式的接头熔核质量较好,裂纹不易沿结合面扩展,避免了因接头强度不足而内部发生断裂,因此具有良好的缓冲吸震效果.

    图  4  焊核拔出失效的宏观形貌与微观断口形貌
    Figure  4.  Macroscopic and microscopic fracture morphology of nugget pull-out failure. (a) macroscopic fracture morphology of nugget pull-out failure; (b) A area; (c) B area; (d) C area

    图5为第9组接头的断口宏观与微观放大形貌. 从图5b ~ 5c可以清晰的看到河流花样与解理台阶,是典型的解理断裂特征,但B区域解理台阶更大,解理河流花样更为复杂. 由于解理裂纹在扩展的中上游,小解理台阶面倾向于汇合在一起形成较大台阶,这表明B区域为裂纹扩展的第二阶段. 在A区域解理台阶面周围与C区域熔核中心处均存在韧窝,这表明在该区域存在大量韧窝形核的位置,在拉剪力的作用下容易产生显微裂纹,但韧窝未有明显的塑性变形就发生了断裂,因此该处接头强度较低,导致缓冲吸震能力弱. 由断口分析可知,界面撕裂断口形貌呈现出解理断裂为主,韧性断裂为辅的特征,且裂纹沿结合面进行扩展,造成接头强度不足,接头内部发生界面撕裂失效.

    图  5  界面撕裂失效的宏观形貌与微观断口形貌
    Figure  5.  Macroscopic and microscopic fracture morphology of interface failure. (a) macroscopic fracture morphology of interface failure; (b) A area; (c) B area; (d) C area

    (1)基于BBD方法建立DP780高强钢胶接点焊接头能量吸收值与失效载荷的多元非线性回归模型,并通过试验验证了模型的可靠性,确定了1.2 mm厚的DP780高强钢胶接点焊最优工艺参数为焊接电流8 kA、焊接时间150 ms、电极压力0.3 MPa.

    (2)焊接时间、电极压力以及焊接电流3个影响焊接质量的因素中,焊接时间对胶接点焊接头的能量吸收值、失效载荷的影响最为显著. 其中,焊接电流和焊接时间对能量吸收值和失效载荷的影响均呈正相关性,而电极压力对能量吸收值和失效载荷的影响呈负相关性. 其次,焊接电流与电极压力的交互作用对能量吸收值的影响显著;焊接时间与焊接电流的交互作用对失效载荷的影响显著.

    (3) DP780高强钢胶接点焊接头存在两种静拉伸失效形式:焊核拔出和界面撕裂. 失效形式为焊核拔出的接头对应较高的能量吸收值、失效载荷. 焊核拔出的断口呈现出韧性断裂特征;界面撕裂的断口呈现以解理断裂为主、韧性断裂为辅的特征.

  • 图  1   MPW接头腐蚀的示意图[15]

    Figure  1.   Corrosion schematic diagram of MPW joint[15]

    图  2   焊接接头界面浸泡腐蚀形貌[16]

    Figure  2.   Immersion corrosion morphology of welded joint interface. (a) 12 h; (b) 36 h[16]

    图  3   6082/DP600无孔搅拌摩擦点焊接头的腐蚀形貌和局部元素分布[18]

    Figure  3.   Corrosion morphology and local element distribution of 6082/DP600 non-porous friction stir welded joints. (a) micro-corrosion morphology of the joint section; (b) local element distribution[18]

    图  4   接头界面腐蚀演变过程[22]

    Figure  4.   Corrosion evolution process of joint interface[22]

    图  5   Al/304SS FSW接头的腐蚀形貌[23]

    Figure  5.   Corrosion morphology of Al/304SS FSW joints. (a) 304SS HAZ; (b) Al HAZ; (c) SZ macroscopic corrosion morphology near the Al side[23]

    图  6   接头宏观腐蚀形貌[24]

    Figure  6.   The macroscopic corrosion morphology of joints. (a) plunge depth (PD) = 0.3 mm, welding speed (v) = 125 mm/min; (b) PD = 0.1 mm, v = 125 mm/min; (c) PD = 0.3 mm, v = 125 mm/min[24]

    图  7   焊接接头不同区域的腐蚀形貌[25]

    Figure  7.   Corrosion morphology of different regions of the welded joint. (a) Al/WM interface; (b) steel/WM interface[25]

    图  8   铝合金和不同焊缝金属界面腐蚀形貌[26]

    Figure  8.   Corrosion morphology of interface between aluminum alloy and different weld metals. (a) Al/AlMgMn-WM interface; (b) Al/Zn-WM intrerface [26]

    图  9   不同焊接方法接头的腐蚀形貌[27]

    Figure  9.   Corrosion morphology of joints with different welding methods. (a) steel/WM interface of GMAW-joint; (b) Al/WM interface of GMAW-joint; (c) steel/WM interface of CMT-joint; (d) Al/WM interface of CMT-joint[27]

    图  10   焊接接头截面的宏观组织[44]

    Figure  10.   Macrostructure of welded joint section[44]

    图  11   腐蚀速率,焊接速度及挤压深度的关系[23]

    Figure  11.   The relationship between corrosion rate, welding speed and plunge depth[23]

    图  12   焊缝金属与钢界面反应层的腐蚀形貌[28]

    Figure  12.   Corrosion morphology of interfacial reaction layer between weld metal and steel[28]

    图  13   接头腐蚀24 h的微观组织[27]

    Figure  13.   The microstructure of the joint corroded for 24 h. (a) GMAW joint; (b) CMT joint[27]

    图  14   Al基体晶间腐蚀形貌[57]

    Figure  14.   Intergranular corrosion morphology of Al matrix[57]

    图  15   不同热输入下的界面腐蚀形貌[13]

    Figure  15.   Interface corrosion morphology with different heat input. (a) Q = 652 J/cm; (b) Q = 765 J/cm; (c) Q = 1141 J/cm[13]

    图  16   Q=765 J/cm界面腐蚀后氧,硅元素分布[13]

    Figure  16.   The distribution of O and Si elements[13]

    图  17   不同腐蚀环境接头界面区域的腐蚀情况[62]

    Figure  17.   Corrosion morphology of joint interface region at different corrosion environments. (a) 3.5 wt.% NaCl solution; (b) 3.5 wt.% Na2SO4 solution[62]

    图  18   不同环境接头腐蚀形貌的变化[63]

    Figure  18.   The change of corrosion morphology of joints in different environments. (a) morphology of joints in air; (b) morphology of joints in different solutions[63]

    表  1   不同焊接接头的腐蚀形式

    Table  1   Corrosion form of different welded joints

    母材焊接方法腐蚀溶液(质量分数)腐蚀类型参考文献
    AA3003/HC340LAMPW5% NaCl(盐雾)点蚀、缝隙腐蚀[15]
    AA5052/HC420LAMPW5% NaCl(盐雾)点蚀、应力腐蚀开裂[16]
    AA6022-T4/HSLA 340RSW、SPR0.90% NaCl + 0.10% CaCl2 + 0.075% NaHCO3点蚀[17]
    AA6082/DP600无孔FSSW3.5% NaCl点蚀、剥落腐蚀[18]
    200ST /T06ZRFSSW3.5% NaCl点蚀、剥落腐蚀、晶间腐蚀[19]
    200ST/ST06 ZRFSSW3.5% NaCl点蚀、剥落腐蚀、晶间腐蚀[20]
    AA6061-T6/Q235FSW3.5% NaCl点蚀、剥落腐蚀[21]
    AA6061/HT590FSW3.5% NaCl点蚀[22]
    Al/304SSFSW3.5% NaCl点蚀[23]
    AA6061/AISI304FSW3.5% NaCl点蚀[24]
    AA6082 T6/镀锌钢激光焊100 mL蒸馏水中 + 3.5%NaCl + 2mL HCl +
    1mL H2SO4
    点蚀、晶间腐蚀[25]
    AA6061/DX56D + Z140MB激光焊5% NaCl(盐雾)点蚀、晶间腐蚀[26]
    5052/镀锌钢GMAW、CMTNaOH、HNO3晶间腐蚀[27]
    5052/镀锌钢GMAW0.6 mol/L NaCl + 0.2 mol/L NaHSO3、水基EXCO
    (6.5 mol/L HNO3 + 50 g/L KNO3 + 234 g/L NaCl)
    点蚀、晶间腐蚀[28]
    下载: 导出CSV

    表  2   铝和铁的热物理参数[39]

    Table  2   Thermal physical parameters of aluminum and iron[39]

    金属密度
    D/(g·cm−3)
    熔点
    T/K
    比热容
    C/(J·kg−1·K−1)
    热导率
    λ/(W·m−1·K−1)
    弹性模量
    E/GPa
    电阻系数
    ρ/(10−8Ω·m)
    铝(Al)2.7933900.5220712.62
    铁(Fe)7.872800481.566.721013.1
    下载: 导出CSV

    表  3   铝/钢焊接接头界面IMC

    Table  3   Summary of IMC at the interface of aluminum/steel welded joints

    母材焊接方法填充金属IMC种类参考文献
    Novelis AC 170 PX/ST06 Z 镀锌钢GTAWAl-Si (ER4047)Fe4Al3、Fe2Al5 、Al-Si-Mn-Fe、Al3Fe2Si3、Al3Fe2Si[15]
    1060/镀锌钢(Q235)脉冲DE-GMA钎焊Al-Mn (ER5356)
    Al-Si (ER4043)
    Fe2Al5、FeAl3[16]
    AA6082/镀锌钢激光焊AA4047Al2FeSi、Al5FeSi、Fe2Al5[17]
    AA6016/DX56D + Z 140 MB激光钎焊AlMg6Mn、ZnAl2Zn-Al、Fe2Al5[18]
    5052/镀锌钢(低碳)GMAW、CMTAl-5%SiAl3FeSi2、Al5FeSi、Fe3Al0.7Si0.3、Fe2Al5、(Fe3Al0.5Si0.5)、Al0.85Si0.15[19]
    19000/镀锌钢(低碳)CMT4047 AlAl3FeSi2、Al5FeSi、Fe3Al0.7Si0.3、Fe2Al5、Fe3Al0.5Si0.5、Al0.85Si0.15[20]
    5052-H32/镀锌钢MIG、CMTAl-5% Si (BA4043 Al)Al5Fe2、Al13Fe4
    Al0.5Fe3Si0.5、βAl-Mg、Mg2Si、
    (δAl9FeSi3、Al0.5Fe0.5 )
    [22]
    5052-H32/镀锌钢GMAWAl-Si (ER4043)Fe2Al5、Fe4Al13、Al-Fe-Si[23]
    5052-H32/DP1200FSWFe2Al3、FeAl2、FeAl[21]
    AA6061-T6/AISI304FSWFe2Al5、AlCrFe2[24]
    AA6061-T6/Q235FSWFe3Al、FeAl、Fe2Al5[25]
    下载: 导出CSV
  • [1] 钟奇, 施毅, 刘博. 铝合金在汽车轻量化中的应用[J]. 新材料产业, 2015(2): 23 − 27. doi: 10.3969/j.issn.1008-892X.2015.02.007

    Zhong Qi, Shi Yi, Liu Bo. Application of Aluminum Alloy in Automotive Lightweight[J]. New Materials Industry, 2015(2): 23 − 27. doi: 10.3969/j.issn.1008-892X.2015.02.007

    [2] 刘荣, 汪洋, 李平仓等. 爆炸焊接小直径铝/不锈钢复合管的研究[J]. 稀有金属材料与工程, 2008, 37(S4): 645 − 648.

    Liu Rong, Wang Yang, Li Pingcang, et al. Explosive welding of small diameter aluminum/stainless steel clad pipes[J]. Rare Metal Materials and Engineering, 2008, 37(S4): 645 − 648.

    [3]

    Qiu R, Satonaka S, Iwamoto C. Effect of interfacial reaction layer continuity on the tensile strength of resistance spot welded joints between aluminum alloy and steels[J]. Materials & Design, 2009, 30(9): 3686 − 3689.

    [4]

    Cao R, Yu G, Chen J H, et al. Cold metal transfer joining aluminum alloys-to-galvanized mild steel[J]. Journal of Materials Processing Technology, 2013, 213(10): 1753 − 1763. doi: 10.1016/j.jmatprotec.2013.04.004

    [5]

    Qin G, Ao Z, Chen Y, et al. Formability behavior of Al/steel MIG arc brazed-fusion welded joint[J]. Journal of Materials Processing Technology, 2019, 273: 116255. doi: 10.1016/j.jmatprotec.2019.116255

    [6]

    Li P, Chen S, Dong H, et al. Interfacial microstructure and mechanical properties of dissimilar aluminum/steel joint fabricated via refilled friction stir spot welding[J]. Journal of Manufacturing Processes, 2020, 49: 385 − 396. doi: 10.1016/j.jmapro.2019.09.047

    [7]

    Uzun H, Dalle Donne C, Argagnotto A, et al. Friction stir welding of dissimilar Al 6013-T4 to X5CrNi18-10 stainless steel[J]. Materials & Design, 2005, 26(1): 41 − 46.

    [8]

    Tanaka T, Morishige T, Hirata T. Comprehensive analysis of joint strength for dissimilar friction stir welds of mild steel to aluminum alloys[J]. Scripta Materialia, 2009, 61(7): 756 − 759. doi: 10.1016/j.scriptamat.2009.06.022

    [9] 何鹏, 冯吉才, 钱乙余, 等. 接触反应法解决铝/不锈钢钎焊的缺陷及脆性[J]. 材料科学与工艺, 2005(1): 82 − 85.

    He Peng, Feng Jicai, Qian Yiyu, et al. Contact reaction method to solve the defects and brittleness of aluminum/stainless steel brazing[J]. Material science and technology, 2005(1): 82 − 85.

    [10] 姜德富. 铝/钢表面同时添加粉末激光焊接头组织性能及机理研究[D]. 湖南: 湖南大学, 2017.

    Jiang Defu. Study on the microstructure, properties and mechanism of laser welded joints with powder addition on the surface of aluminum/steel[D]. HuNan: HuNan University, 2017.

    [11]

    Sravanthi S S, Acharyya S G, Prabhakar K V P, et al. Effect of varying weld speed on corrosion resistance and mechanical behavior of Aluminium - steel welds fabricated by cold metal transfer technique[J]. Materials and Manufacturing Processes, 2019, 34(14): 1627 − 1637. doi: 10.1080/10426914.2019.1605180

    [12]

    Gnedenkov S A, Sinebryukhov L S, Mashtalyar V D, et al. Effect of microstructure on the corrosion resistance of TIG welded 1579 alloy[J]. Materials, 2019, 12(16): 2615 − 2615. doi: 10.3390/ma12162615

    [13]

    Ma H, Qin G, Geng P, et al. Effect of intermetallic compounds on the mechanical property and corrosion behaviour of aluminium alloy/steel hybrid fusion-brazed welded structure[J]. Journal of Manufacturing Processes, 2022, 75: 170 − 180. doi: 10.1016/j.jmapro.2022.01.004

    [14]

    Olatunji P. Abolusoro E T A. Wear and corrosion behaviour of friction stir welded aluminium alloys- an overview[J]. International Journal of Mechanical and Production Engineering Research and Development, 2019, 9(3): 967 − 982.

    [15]

    Wang S, Luo K, Sun T, et al. Corrosion behavior and failure mechanism of electromagnetic pulse welded joints between galvanized steel and aluminum alloy sheets[J]. Journal of Manufacturing Processes, 2021, 64: 937 − 947. doi: 10.1016/j.jmapro.2021.02.039

    [16]

    Geng H, Cui J, Li G, et al. Mechanical degradation of magnetic pulse welded Al–Fe joint in neutral salt environment[J]. Journal of Materials Research and Technology, 2021, 15: 2365 − 2378. doi: 10.1016/j.jmrt.2021.09.078

    [17]

    Pan B, Sun H, Shang S L, et al. Corrosion behavior in aluminum/galvanized steel resistance spot welds and self-piercing riveting joints in salt spray environment[J]. Journal of Manufacturing Processes, 2021, 70: 608 − 620. doi: 10.1016/j.jmapro.2021.08.052

    [18]

    Zhang Z K, Yu Y, Zhang J F, et al. Corrosion behavior of keyhole-free friction stir spot welded joints of dissimilar 6082 aluminum alloy and DP600 galvanized steel in 3.5% NaCl solution[J]. Metals, 2017, 7(9): 338 − 338. doi: 10.3390/met7090338

    [19]

    Li P, Wang Y, Wang S, et al. Corrosion behavior of refilled friction stir spot welded joint between aluminum alloy and galvanized steel[J]. Materials Research Express, 2018, 5(9): 96524 − 96524. doi: 10.1088/2053-1591/aad890

    [20]

    Ma Y, Dong H, Wang Y, et al. Effect of Zn coating on microstructure and corrosion behavior of dissimilar joints between aluminum alloy and steel by refilled friction stir spot welding[J]. Journal of Applied Electrochemistry, 2021, 52(1): 85 − 102.

    [21]

    Mo Shuxian, Dong Shaokang, Zhu Hao, et al. Corrosion behavior of aluminum/steel dissimilar metals friction stir welding joints[J]. CHINA WELDING, 2021, 30(3): 20 − 30.

    [22]

    Seo B, Song K H, Park K. Corrosion properties of dissimilar friction stir welded 6061 aluminum and HT590 steel[J]. Metals and Materials International, 2018, 24(6): 1232 − 1240. doi: 10.1007/s12540-018-0135-2

    [23]

    Murugan B, Thirunavukarasu G, Kundu S, et al. Influence of tool traverse speed on structure, mechanical properties, fracture behavior, and weld corrosion of friction stir welded joints of aluminum and stainless steel[J]. Advanced Engineering Materials, 2019, 21(2): 1800869. doi: 10.1002/adem.201800869

    [24]

    Mahto R P, Anishetty S, Sarkar A, et al. Interfacial microstructural and corrosion characterizations of friction stir welded AA6061-T6 and AISI304 materials[J]. Metals and Materials International, 2018, 25(3): 752 − 767.

    [25]

    Narsimhachary D, Rai P K, Shariff S M, et al. Corrosion behavior of laser-brazed surface made by joining of AA6082 and galvanized steel[J]. Journal of Materials Engineering and Performance, 2019, 28(4): 2115 − 2127. doi: 10.1007/s11665-019-03962-y

    [26]

    Wloka J, Laukant H, Glatzel U, et al. Corrosion properties of laser beam joints of aluminium with zinc-coated steel[J]. Corrosion Science, 2007, 49(11): 4243 − 4258. doi: 10.1016/j.corsci.2007.04.014

    [27]

    Sravanthi S S, Acharyya S G, Chapala P. Effect of GMAW-brazing and cold metal transfer welding techniques on the corrosion behaviour of aluminium-steel lap joints[J]. Materials Today: Proceedings, 2019, 18(pt 7): 2708 − 2716.

    [28]

    Ma Y, Dong H, Li P, et al. A novel corrosion transformation process in aluminum alloy/galvanized steel welded joint[J]. Corrosion Science, 2022, 194: 109936. doi: 10.1016/j.corsci.2021.109936

    [29]

    Wan L, Huang Y. Friction stir welding of dissimilar aluminum alloys and steels: a review[J]. The International Journal of Advanced Manufacturing Technology, 2018, 99(5): 1781 − 1811.

    [30]

    Wang L, Li H, Wu D, et al. Study on microstructures and fatigue behavior of dissimilar Al/steel resistance spot welded joint[J]. Fatigue & Fracture of Engineering Materials & Structures, 2022, 45(7): 2047 − 2057.

    [31]

    Zhao Y, Long Y, Li Z. Research progress of transition layer and filler wire for laser welding of steel and aluminum dissimilar metals[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119(7-8): 4149 − 4158. doi: 10.1007/s00170-021-08442-z

    [32]

    Zhou D, Xu S, Peng L, et al. Laser lap welding quality of steel/aluminum dissimilar metal joint and its electronic simulations[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86(5-8): 2231 − 2242. doi: 10.1007/s00170-015-8254-0

    [33]

    Wallerstein D, Solla E L, Lusquiños F, et al. Advanced characterization of intermetallic compounds in dissimilar aluminum-steel joints obtained by laser welding-brazing with Al Si filler metals[J]. Materials Characterization, 2021, 179: 111345. doi: 10.1016/j.matchar.2021.111345

    [34]

    Furukawa K. New CMT arc welding process–welding of steel to aluminium dissimilar metals and welding of super-thin aluminium sheets[J]. Welding International, 2006, 20(6): 440 − 445. doi: 10.1533/wint.2006.3598

    [35]

    Sun Y F, Fuji H, Takaki N, et al. Microstructure and mechanical properties of dissimilar Al alloy/steel joints prepared by a flat spot friction stir welding technique[J]. Materials & Design, 2013, 47: 350 − 357.

    [36]

    Katayama S. Laser welding of aluminium alloys and dissimilar metals[J]. Welding International, 2004, 18(8): 618 − 625. doi: 10.1533/wint.2004.3315

    [37]

    Movahedi M, Kokabi A H, Reihani S M S, et al. Effect of tool travel and rotation speeds on weld zone defects and joint strength of aluminium steel lap joints made by friction stir welding[J]. Science and Technology of Welding and Joining, 2012, 17(2): 162 − 167. doi: 10.1179/1362171811Y.0000000092

    [38]

    Sierra G, Peyre P, Beaume F D, et al. Steel to aluminium braze welding by laser process with Al–12Si filler wire[J]. Science and Technology of Welding and Joining, 2008, 13(5): 430 − 437. doi: 10.1179/174329308X341852

    [39] 冯宝强. 铝/钢异种金属激光-电弧复合焊接及胶焊研究[D]. 大连理工大学, 2018.

    Feng Baoqiang. Research on laser-arc hybrid welding and adhesive welding of aluminum/steel dissimilar metals[D]. Dalian: Dalian University of Technology, 2018.

    [40]

    Ma H, Qin G, Geng P, et al. Microstructural characterisation and corrosion behaviour of aluminium alloy/steel hybrid structure produced by friction welding[J]. Journal of Manufacturing Processes, 2021, 61: 349 − 356. doi: 10.1016/j.jmapro.2020.11.014

    [41]

    Shi Y, Li J, Zhang G, et al. Corrosion behavior of aluminum-steel weld-brazing joint[J]. Journal of Materials Engineering and Performance, 2016, 25(5): 1916 − 1923. doi: 10.1007/s11665-016-2020-9

    [42]

    Chen L, Zeng Q, Li J, et al. Effect of microstructure on corrosion behavior of a Zr–Sn–Nb–Fe–Cu–O alloy[J]. Materials & Design, 2016, 92: 888 − 896.

    [43]

    Dong J H, Tan L L, Ren Y B, et al. Effect of microstructure on corrosion behavior of Mg–Sr Alloy in Hank’s Solution[J]. Acta Metallurgica Sinica (English Letters), 2018, 32(3): 305 − 320.

    [44]

    Anaman S Y, Cho H-H, Das H, et al. Microstructure and mechanical/electrochemical properties of friction stir butt welded joint of dissimilar aluminum and steel alloys[J]. Materials Characterization, 2019, 154: 67 − 79. doi: 10.1016/j.matchar.2019.05.041

    [45]

    Benfer S, Thomä M, Wagner G, et al. Investigations on corrosion properties of ultrasound-enhanced friction-stir-welded aluminum/dual-phase steel joints[J]. steel research international, 2021, 92(12): 2100249. doi: 10.1002/srin.202100249

    [46]

    Gollapudi S. Grain size distribution effects on the corrosion behaviour of materials[J]. Corrosion Science, 2012, 62: 90 − 94. doi: 10.1016/j.corsci.2012.04.040

    [47]

    Huang L, Wang K, Wang W, et al. Effects of grain size and texture on stress corrosion cracking of friction stir processed AZ80 magnesium alloy[J]. Engineering Failure Analysis, 2018, 92: 392 − 404. doi: 10.1016/j.engfailanal.2018.06.012

    [48]

    Wang P J, Ma LW, Cheng X Q, et al. Influence of grain refinement on the corrosion behavior of metallic materials: A review[J]. International Journal of Minerals, Metallurgy and Materials, 2021, 28(7): 1112 − 1126. doi: 10.1007/s12613-021-2308-0

    [49]

    Zhang R, Gupta R K, Davies C H J, et al. The influence of grain size and grain orientation on sensitization in AA5083[J]. Corrosion, 2015, 72(2): 160 − 168.

    [50]

    Ralston K D, Birbilis N. Effect of grain size on corrosion: A review[J]. Corrosion, 2010, 66(7): 075005 − 075013. doi: 10.5006/1.3462912

    [51]

    Rong Chang, Zeng, En Hou, et al. Corrosion and characterisation of dual phase Mg-Li-Ca alloy in Hank's solution: The influence of microstructural features[J]. Corrosion Science 2014, 79: 69 − 82

    [52]

    Loto C A, Loto R T. Corrosion behaviour of heat treated duplex (αβ) brass in nitric acid[J]. Silicon, 2018, 10(6): 2877 − 2888. doi: 10.1007/s12633-018-9827-y

    [53]

    Krostad H N, Johnsen R. Corrosion properties of nickel-aluminium bronze in natural seawater—Effect of galvanic coupling to UNS S31603[J]. Corrosion Science, 2017, 121: 43 − 56. doi: 10.1016/j.corsci.2017.03.016

    [54]

    Li M, Guo L Q, Qiao L J, et al. The mechanism of hydrogen-induced pitting corrosion in duplex stainless steel studied by SKPFM[J]. Corrosion Science, 2012, 60: 76 − 81. doi: 10.1016/j.corsci.2012.04.010

    [55]

    Shahryari A, Omanovic S, Szpunar J A. Electrochemical formation of highly pitting resistant passive films on a biomedical grade 316LVM stainless steel surface[J]. Materials Science and Engineering: C, 2008, 28(1): 94 − 106. doi: 10.1016/j.msec.2007.09.002

    [56]

    Qin Z, Zhang Q, Luo Q, et al. Microstructure design to improve the corrosion and cavitation corrosion resistance of a nickel-aluminum bronze[J]. Corrosion Science, 2018, 139: 255 − 266. doi: 10.1016/j.corsci.2018.04.043

    [57]

    Sravanthi S S, Swati Ghosh Acharyya, Phani Prabhakar K V, et al. Integrity of 5052 Al-mild steel dissimilar welds fabricated using MIG-brazing and cold metal transfer in nitric acid medium[J]. Journal of Materials Processing Technology, 2019, 268: 97 − 106. doi: 10.1016/j.jmatprotec.2019.01.010

    [58]

    Merino M, Pardo A, Arrabal R, et al. Influence of chloride ion concentration and temperature on the corrosion of Mg–Al alloys in salt fog[J]. Corrosion Science, 2010, 52(5): 1696 − 1704. doi: 10.1016/j.corsci.2010.01.020

    [59] 李云涛, 李晓宁, 包俊成, 等. 2024铝合金盐雾腐蚀评估及腐蚀形貌分析[J]. 腐蚀与防护, 2015, 36(9): 864 − 868. doi: 10.11973/fsyfh-201509

    Li Yuntao, Li Xiaoning, Bao Juncheng, et al. Salt spray corrosion evaluation and corrosion morphology analysis of 2024 aluminum alloy[J]. Corrosion & Protection, 2015, 36(9): 864 − 868. doi: 10.11973/fsyfh-201509

    [60] 张艺凡. 铜铝层状复合材料在不同腐蚀介质中的腐蚀行为[D]. 沈阳: 沈阳工业大学, 2021.

    Zhang Yifan. Corrosion behavior of copper-aluminum laminated composites in different corrosive media[D]. Shengyang: Shengyang University of Technology, 2021.

    [61]

    Sravanthi S S, Acharyya S G, Phani Prabhakar K V, et al. Effect of Welding Parameters on the Corrosion Behavior of Dissimilar Alloy Welds of T6 AA6061 Al-Galvanized Mild Steel[J]. Journal of Materials Engineering and Performance, 2018, 27(10): 5518 − 5531. doi: 10.1007/s11665-018-3596-z

    [62] 苏永超. 钢铝异种金属交流双脉冲焊接接头组织及性能研究[D]. 上海: 上海交通大学, 2014.

    Su Yongchao. Study on microstructure and properties of AC double pulse welded joints of steel and aluminum dissimilar metals[D]. Shanghai: Shanghai Jiaotong University, 2014.

    [63]

    Takehisa S, Iizuka T. Galvanic corrosion related to steel/aluminum dissimilar joining tailored blank[J]. Key Engineering Materials, 2014, 3193(611-612): 1460 − 1467.

    [64]

    Yoon B H, Shim J Y, Kang B Y. A study on the effect of plating layer on the corrosion properties of steel/al dissimilar magnetic pulse weldments[J]. Journal of Welding and Joining, 2020, 38(3): 305 − 310. doi: 10.5781/JWJ.2020.38.3.11

    [65] 王健. 激光高熵化填粉焊接铝/钢异种金属组织性能研究[D]. 南昌: 华东交通大学, 2021.

    Wang Jian. Study on microstructure and properties of aluminum / steel dissimilar metals welded by laser high entropy powder filling[D]. Nanchang: East China Jiaotong University, 2021.

  • 期刊类型引用(5)

    1. 刘立学,孟根巴根,许晓,夏明生,牟永胜,赵光. 烘烤对980 MPa先进高强钢RSW接头性能的影响. 焊接. 2024(01): 64-72 . 百度学术
    2. 陈江波,曾凯,邢保英,张洪申,丁燕芳,何晓聪. 铝合金-胶膜压印/粘接复合连接工艺及接头失效分析. 航空学报. 2023(14): 307-317 . 百度学术
    3. 王玉涛,曾凯,邢保英,何晓聪. 铝合金分瓣模压印接头的强度预测模型. 机械科学与技术. 2023(08): 1357-1361 . 百度学术
    4. 赵大伟,王元勋,梁东杰,Yuriy Bezgans. 基于功率信号动态特征的钛合金电阻点焊熔核直径预测. 焊接学报. 2022(01): 55-59+116-117 . 本站查看
    5. 聂勇军,魏世民. 应用ISIGHT的大型弯管环柔性焊接技术可靠性研究. 机械设计与制造. 2022(05): 103-106+110 . 百度学术

    其他类型引用(2)

图(18)  /  表(3)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 7
出版历程
  • 收稿日期:  2023-07-17
  • 网络出版日期:  2024-05-12
  • 刊出日期:  2024-07-24

目录

/

返回文章
返回