高级检索

基于功率信号动态特征的钛合金电阻点焊熔核直径预测

赵大伟, 王元勋, 梁东杰, YuriyBezgans

赵大伟, 王元勋, 梁东杰, YuriyBezgans. 基于功率信号动态特征的钛合金电阻点焊熔核直径预测[J]. 焊接学报, 2022, 43(1): 55-59. DOI: 10.12073/j.hjxb.20210828001
引用本文: 赵大伟, 王元勋, 梁东杰, YuriyBezgans. 基于功率信号动态特征的钛合金电阻点焊熔核直径预测[J]. 焊接学报, 2022, 43(1): 55-59. DOI: 10.12073/j.hjxb.20210828001
ZHAO Dawei, WANG Yuanxun, LIANG Dongjie, Yuriy Bezgans. Prediction of nugget diameter in resistance spot welding of titanium alloys based on dynamic characteristics of power signals[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 55-59. DOI: 10.12073/j.hjxb.20210828001
Citation: ZHAO Dawei, WANG Yuanxun, LIANG Dongjie, Yuriy Bezgans. Prediction of nugget diameter in resistance spot welding of titanium alloys based on dynamic characteristics of power signals[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 55-59. DOI: 10.12073/j.hjxb.20210828001

基于功率信号动态特征的钛合金电阻点焊熔核直径预测

基金项目: 国家自然科学基金资助项目(52175320)
详细信息
    作者简介:

    赵大伟,博士;主要研究方向焊接质量控制与优化;Email: zhaodawei0322@163.com

    通讯作者:

    王元勋,博士,教授,博士研究生导师;Email: wangyuanxun@hust.edu.cn.

  • 中图分类号: TG 456

Prediction of nugget diameter in resistance spot welding of titanium alloys based on dynamic characteristics of power signals

  • 摘要: 为了实时预测0.4 mm厚度的TC2钛合金电阻点焊焊接接头熔核直径,采用罗氏线圈获取焊接过程中的焊接电流的变化情况,利用上、下电极间导线测量焊接过程中电压曲线,在此基础上获取电阻点焊过程中的焊接功率曲线. 分析焊接功率曲线在焊接过程中的变化情况,并从曲线中提取表征焊接质量的特征值. 结果表明,焊接功率曲线不仅与动态电阻曲线的变化相一致,而且与焊接热输入的大小更为相关. 利用焊接功率曲线提取的更为精确的焊接热输入与熔核直径之间的相关系数高达0.9. 通过克里金算法强大的非线性映射能力可以得到用动态功率曲线特征值预测熔核直径的数学模型. 该模型的预测值与实际值之间的最大相对误差约为8.7%,能有效地预测0.4 mm厚度的TC2电阻点焊焊接质量.
    Abstract: The power signal in the welding process was employed for the thickness of 0.4 mm TC2 titanium alloy in order to monitor and predict the nugget diameter. The voltage between the upper and lower electrode was obtained using the twisted pair cable and the welding current was acquired based on the Rogowski coil. On this basis, the welding power curve during the resistance spot welding process was obtained. The changes of the welding power curve during the welding process were analyzed, and the characteristic values that characterize the welding quality were extracted. The results show that the welding power curve was not only consistent with the change of the dynamic resistance curve, but also more related to the input of welding heat input. The correlation coefficient between welding heat input, accurately extracted from welding power curve, and nugget diameter is as high as 0.9. A mathematical model for predicting the nugget diameter with the eigenvalues of the dynamic power curve can be obtained through the powerful nonlinear mapping ability of the kriging algorithm. The maximum relative error between the predicted value and the actual value of the model was about 8.7%, which can effectively predict and monitor the welding quality of TC2 resistance spot welding with a thickness of 0.4 mm in real time.
  • 图  1   信号采集装置

    Figure  1.   Data pickup assembly

    图  2   焊接电流波形

    Figure  2.   Welding current curve

    图  3   动态焊接功率曲线

    Figure  3.   Dynamic welding power curve

    图  4   动态电阻曲线

    Figure  4.   Dynamic resistance curve

    图  5   3类焊点的功率曲线

    Figure  5.   Welding power curves of three kinds of welding joints

    图  6   熔核直径与特征量之间的散点图

    Figure  6.   Scatter plots of nugget diameter and extracted features. (a) value of power appreciation; (b) value of power drop; (c) power drop rate; (d) welding heat input

    图  7   克里金模型的预测结果

    Figure  7.   Outputs of Kriging model

    表  1   焊接试验结果

    Table  1   Experimental results for the resistance spot welding

    电极压力
    F/N
    焊接电流
    I/kA
    焊接时间
    t/ms
    熔核直径
    D/mm
    抗剪力
    R/N
    失效能量
    Q/J
    1001.460.851021.930.5
    1001.881.952426.853.18
    751.681.632014.651.96
    752.2122.122685.033.92
    1251.081.221321.580.89
    1251.6121.912240.363.51
    1252.241.681896.32.16
    1751.0121.371193.10.51
    1751.641.281569.830.43
    1752.281.962883.944.36
    下载: 导出CSV

    表  2   特征量与熔核直径之间的相关系数

    Table  2   Correlation coefficients among extracted features and nugget diameter

    功率上升值
    ΔP/kW
    功率下降值
    ΔP1/kW
    功率下降率
    Ps
    焊接热输入
    E/J
    0.520.810.870.90
    下载: 导出CSV
  • [1] 杨龙, 杨冰, 阳光武, 等. 不锈钢车体点焊接头疲劳特性分析[J]. 焊接学报, 2020, 41(7): 18 − 24. doi: 10.12073/j.hjxb.20191204005

    Yang Long, Yang Bing, Yang Guangwu, et al. Analysis on fatigue characteristics of spot welded joints of stainless steel car body[J]. Transactions of the China Welding Institution, 2020, 41(7): 18 − 24. doi: 10.12073/j.hjxb.20191204005

    [2]

    Xia Y J, Shen Y, Zhou L, et al. Expulsion intensity monitoring and modeling in resistance spot welding based on electrode displacement signals[J]. Journal of Manufacturing Science and Engineering, 2021, 143(3): 031008. doi: 10.1115/1.4048441

    [3]

    Summerville C, Adams D, Compston P, et al. Nugget diameter in resistance spot welding: a comparison between a dynamic resistance based approach and ultrasound C-scan[J]. Procedia Engineering, 2017, 183: 257 − 263. doi: 10.1016/j.proeng.2017.04.033

    [4]

    Bag S, DiGiovanni C, Han X, et al. A phenomenological model of resistance spot welding on liquid metal embrittlement severity using dynamic resistance measurement[J]. Journal of Manufacturing Science and Engineering, 2020, 142(3): 031007. doi: 10.1115/1.4046162

    [5]

    Guan S, He X, Wang X, et al. Multiphysics simulation of the resistance spot welding detection using electromagnetic ultrasonic transverse wave[J]. The International Journal of Advanced Manufacturing Technology, 2020, 110(1): 79 − 88.

    [6] 陈树君, 郝键, 李方, 等. 铝合金电阻点焊压力信号的动态特征分析[J]. 焊接学报, 2020, 41(3): 1 − 6. doi: 10.12073/j.hjxb.20190124002

    Chen Shujun, Hao Jian, Li Fang, et al. Dynamic characteristics analysis of resistance spot welding pressure signal of aluminum alloy[J]. Transactions of the China Welding Institution, 2020, 41(3): 1 − 6. doi: 10.12073/j.hjxb.20190124002

    [7] 曾凯, 孙晓婷, 邢保英, 等. DP780高强钢胶接点焊的工艺优化及断裂特征分析[J]. 焊接学报, 2020, 41(4): 77 − 83. doi: 10.12073/j.hjxb.20191017001

    Zeng Kai, Sun Xiaoting, Xing Baoying, et al. Process optimization and fracture characteristic analysis of DP780 high strength steel weld-bonding[J]. Transactions of the China Welding Institution, 2020, 41(4): 77 − 83. doi: 10.12073/j.hjxb.20191017001

    [8]

    Bin W, Shuili G, Li C, et al. Microstructure and mechanical properties of TC2 titanium alloy laser welded joints[J]. Rare Metal Materials and Engineering, 2013, 42: 136 − 138.

    [9]

    Fatmahardi I, Mustapha M, Ahmad A, et al. An exploratory study on resistance spot welding of titanium alloy Ti-6Al-4V[J]. Materials, 2014, 14(9): 2336.

    [10] 孔谅, 刘思源, 王敏. 先进高强钢电阻点焊接头的断裂模式分析与预测[J]. 焊接学报, 2020, 41(1): 12 − 17.

    Kong Liang, Liu Siyuan, Wang Min. Failure mode analysis and prediction of resistance spot welding joints of advanced high strength steel[J]. Transactions of the China Welding Institution, 2020, 41(1): 12 − 17.

    [11]

    Zhao D, Ivanov M, Wang Y, et al. Welding quality evaluation of resistance spot welding based on a hybrid approach[J]. Journal of Intelligent Manufacturing, 2021, 32: 1819 − 1832. doi: 10.1007/s10845-020-01627-5

    [12]

    García-Gutiérrez A, Gonzalo J, Domínguez D, et al. Stochastic optimization of high-altitude airship envelopes based on kriging method[J]. Aerospace Science and Technology, 2020, 120: 107251.

    [13] 吕小青, 王旭, 徐连勇, 等. 基于组合模型的MAG焊工艺参数多目标优化[J]. 焊接学报, 2020, 41(2): 6 − 11. doi: 10.12073/j.hjxb.20190629001

    Lü Xiaoqing, Wang Xu, Xu Lianyong, et al. Multi-objective optimization of MAG process parameters based on ensemble models[J]. Transactions of the China Welding Institution, 2020, 41(2): 6 − 11. doi: 10.12073/j.hjxb.20190629001

图(7)  /  表(2)
计量
  • 文章访问数:  307
  • HTML全文浏览量:  50
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-27
  • 网络出版日期:  2022-02-14
  • 刊出日期:  2022-01-24

目录

    /

    返回文章
    返回