高级检索

超声冲击对电弧增材制造铝合金应力影响的有限元分析

Finite element analysis of the effect of ultrasonic impact on the stress of aluminum alloy arc additive manufacturing

  • 摘要: 采用有限元分析方法对附加超声冲击下电弧增材制造2219铝合金的过程进行数值模拟,并研究了其应力场变化以及工件变形情况的变化. 结果表明,附加超声冲击能使多层多道沉积过程中沉积件边缘处以及基板中靠近沉积件的区域的应力集中程度下降. 多层多道沉积过程中附加超声冲击能有效降低沉积件内部的应力. 在附加超声冲击后道间交界处的应力范围由156.1 ~ 211.6 MPa下降至138.8 ~ 181.9 MPa,表面平均残余应力下降22.3%. 附加超声冲击下,多层多道电弧增材构件最大变形量由0.61 mm下降至0.53 mm,平均变形量由0.33 mm下降至0.27 mm. 试验实际测量所得的与有限元计算的多层多道沉积件上表面的应力分布规律相近,证明模拟结果的可靠.

     

    Abstract: The finite element analysis was used to numerically simulate the process of arc additive manufacturing of 2219 aluminum alloy under ultrasonic impact, and the changes in stress fields and component deformation were studied. The results show that the additional ultrasonic impact can reduce the stress concentration at the edge of the sediment and at the area close to the sediment in the substrate during the multi-layer multi-channel deposition. Additional ultrasonic impact during multi-layer multi-channel deposition can effectively reduce the stress inside the sediment. After the ultrasonic impact, the stress range at the interface between layers decreased from 156.1 − 211.6 MPa to 138.8 − 181.9 MPa, and the average residual stress on the surface decreased by 22.3%. Under the ultrasonic impact, the maximum deformation of multi-layer multi-pass arc additive component decreased from 0.61 mm to 0.53 mm, and the average deformation decreased from 0.33 mm to 0.27 mm. The stress distribution on the upper surface of the multi-layer sediment calculated by the finite element is similar to that of the measured in actual experiment, which proves that the simulation results are reliable.

     

/

返回文章
返回