Effect of Ni interlayer on microstructure of aluminum/magnesium dissimilar metal friction stir welding joint
-
摘要: 采用搅拌摩擦焊(friction stir welding, FSW),引入厚度为0.05 mm镍箔作为中间层,在焊接速度不变条件下,采用不同转速对厚度为4 mm的6061铝合金和AZ31镁合金进行平板对接,对接头进行系列微观组织表征及力学性能测试,探讨转速对接头中镍颗粒分布状态,金属间化合物(intermetallic compounds, IMCs)种类与分布及接头强度的影响规律. 研究结果表明:与未引入中间层接头相比,引入镍改变了铝/镁异种金属FSW接头焊核区(weld nugget zone, WNZ)中IMCs种类及分布,WNZ存在明显的镁合金与铝合金相间的带状组织,其上分布着絮状Al12Mg17、颗粒状Mg2Ni、层状Al3Mg2及大小不一的镍箔颗粒;随着转速增加,镍箔颗粒分布愈加均匀,Al3Mg2数量相对减少,且脆性Al3Mg2由连续分布逐渐演变为断续分布;当转速为750 r/min时,接头抗拉强度达到最大值,与未引入中间层接头相比,引入镍中间层接头抗拉强度提高了56 MPa,达到镁合金的56.9%.Abstract: The flat butt welding tests were carried out on 6061 aluminum alloy and AZ31 magnesium alloy with the thickness of 4 mm by introducing 0.05 mm Ni foil interlayer under the condition of constant travel speed and different rotation speeds using the friction stir welding (FSW) technology. The effects of rotation speeds on the distribution of Ni foil particles, the types and distribution of the intermetallic compounds (IMCs) and the strength of the joints were investigated by series of microstructure characterization and mechanical property tests. The results showed that compared to the joint without Ni, the introduction of Ni foil interlayer changed the types and distribution of IMCs in the weld nugget zone (WNZ). In WNZ, there was an obvious banded structure between magnesium alloy and aluminum alloy on which the flocculent Al12Mg17, granular Mg2Ni, lamellar Al3Mg2, and Ni foil particles of varying sizes were distributed. With the increasing of rotation speed, the distribution of Ni became more uniform, while the Al3Mg2 decreased relatively, and the distribution of the brittle Al3Mg2 gradually changed from continuous to intermittent. The tensile strength of the joint reached the maximum value when the rotation speed was 750 r/min. Compared to the joint without Ni, the tensile strength of the joint with the introduction of Ni foil interlayer was increased by 56 MPa, which was 56.9% of the strength of magnesium alloy.
-
0. 序言
固体氧化物燃料电池(SOFC)是一种清洁高效的高温固体电化学能源转换系统,具备成本低、污染小、能量转化率高、燃料多样化以及噪音小等优势. 目前已经在便携式电源、汽车电源和工业电站等领域取得了实际应用[1-3]. 为了满足高功率输出需求,需要将多个单电池互连构建电池堆,其中实现电池片(cell)与不锈钢连接体(interconnect)的气密连接是构建SOFC电池堆的关键技术[4-5].
SOFC电池堆需要在高温(800 ℃)氧化/还原气氛下长期服役,接头将面临化学腐蚀和热应力的挑战,连接位置气体泄漏将导致电池堆性能严重衰减[6]. 当前,适用于SOFC组件封接的方法包括玻璃连接和空气反应钎焊连接. 玻璃钎料成本低易于制备,但玻璃钎料在高温服役过程易产生晶化现象,导致接头脆性增加,容易形成裂纹缺陷,不利于接头组织和性能的稳定,此外,玻璃材料通常对应力引起的开裂抑制作用较差,在应力较大的移动应用中开裂倾向更加明显[7-8]. 空气反应钎焊(reactive air brazing, RAB)与玻璃连接类似,在空气中进行连接,不需要真空或惰性气氛保护. 钎料体系以贵金属为主,添加适量金属氧化物用于提高钎料的润湿性能,Ag-CuO是常用的RAB钎料体系;以贵金属为主的接头具备良好的变形能力,可以吸收部分热应力和冲击应力. 但是,Ag-CuO钎料热膨胀系数(CTE)为 ~ 19.1 × 10–6 K−1,与SOFC组件(~ 12.3 × 10–6 K−1)存在较大CTE失配,导致接头在加热和冷却过程中产生较大热应力,成为电池堆连接失效的主要原因[9-10].
加入低CTE增强相调节金属基复合钎料热膨胀行为,是真空钎焊中常用的方法,纳米尺度增强相有助于提高复合钎料流动性,不易形成空隙或裂纹缺陷[11-12]. 基于此,选用纳米Al2O3作为增强相,开发了新型的纳米Al2O3增强Ag-CuO复合钎料,研究了RAB工艺和接头高温服役性能,探究了氧化和还原气氛中组织演化规律.
1. 试验方法
试验使用的阳极支撑型SOFC电池片为多层结构,包括NiO-YSZ阳极支撑体、Ni-YSZ阳极、YSZ电解质、CGO多孔扩散阻挡层和LSC阴极,其中YSZ/多孔CGO构成的复合层为电池片的待连接位置. SOFC专用铁素体不锈钢Crofer22H由德国蒂森克虏伯生产,Crofer22H不锈钢中添加Nb和W元素与Si元素反应形成拉夫斯相(Lavers-phase),在基体中弥散分布提高了不锈钢的高温服役性能. 为了提高不锈钢Crofer22H抗氧化性能,焊前对待焊表面铝化,获得厚度为2 μm连续的Al2O3保护层,不锈钢铝化工艺和保护层性能已经在之前的研究中进行详细报道[13]. 将电池片和铝化Crofer22H分别加工成10 mm × 10 mm和20 mm × 20 mm的样品用于RAB连接试验.
研究已经表明Ag-8mol%CuO作为基体钎料,既能与纳米Al2O3保持良好的相容性,又能确保复合钎料在YSZ陶瓷表面润湿性良好,当纳米Al2O3含量为8%(质量分数)时,接头获得最大连接强度[14]. 因此,选用Ag-8mol%CuO作为基体钎料,添加8%纳米Al2O3获得复合钎料. 配制好的复合钎料经过10 h球磨混合后,使用粉末压片机制备厚度约为100 μm的钎料片. 将试样由下至上按照铝化Crofer22H/Ag-CuO-Al2O3/电池片的顺序进行装配,如图1所示. 将装配好的试件放入加压马弗炉中进行RAB连接,施加16 N/cm2的装配压力,以180 ℃/h的升温速率加热至1 050 ℃,保温30 min,以180 ℃/h的速率冷却至室温. 将焊后样品加热至800 ℃保温300 h,用于测试接头高温服役性能,其中高温氧化试验在空气气氛中进行,模拟SOFC阴极工作气氛,高温还原试验在4%H2-50%H2O-N2潮湿还原性气氛进行,用于模拟SOFC阳极工作气氛.
采用扫描电镜和能谱分析仪对接头进行组织分析;采用自制的气密性测试装置对接头进行气密性检测,每组参数制备5个试样,用于减小测量误差,气密性测试试样制备及计算方法已经在之前的研究中进行了报道[9].
2. 试验结果与分析
2.1 接头组织分析
对电池片和铝化Crofer22H进行RAB连接,获得的接头组织及对应的元素面扫描如图2所示. 由图2a分析可得,Ag-CuO-Al2O3复合钎料实现了电池片与铝化Crofer22H可靠连接,焊缝无气孔和裂纹等缺陷,Al2O3增强相均匀分布在钎缝中,经过高温连接过程后,纳米Al2O3已经烧结长大达到了微米尺寸,研究已经指出在1 050 ℃/30 min的RAB工艺下,存在部分未烧结长大纳米Al2O3,最终接头形成了微米-纳米Al2O3增强相共存的现象[14]. 对电池片侧连接界面(区域1)进行高倍组织观察和元素面分析,结果如图2b所示. Ag元素面分布确认钎料已经渗入CGO孔洞中,并与致密的YSZ层实现了紧密连接,钎料基体与电池片界面形成了可靠的机械互锁结构. 结合Cu和Al的元素分布以及对应物相的EDS分析结果可知,浅灰色物相为CuO,深灰色物相为CuO与Al2O3增强相反应形成的CuAl2O4相. 钎缝位置(区域2)组织以及元素面分析如图2c所示,在钎缝中可以观察到CuO,Al2O3以及CuAl2O4相,Ag基钎料与各物相均保持了良好的相容性,CuO与Al2O3的适度反应,有助于消除复合钎料经常出现的未焊合缺陷. 图2d显示了铝化Crofer22H侧(区域3)组织和元素面分析,钎料基体与粗糙的铝化Crofer22H表面同样形成了机械互锁结构. 钎料中CuO与Al2O3保护层发生反应形成了CuAl2O4相,但是并没有破坏Al2O3保护层的完整性,结合不锈钢基体Fe,Cr,Mn元素面分布可知,Al2O3保护层对不锈钢基体构成了良好的保护,避免了钎料中的CuO与不锈钢反应造成的基体腐蚀,有效阻隔了不锈钢基体元素向钎缝的扩散,确保了钎缝组织稳定性,消除了RAB连接过程不锈钢基体的腐蚀氧化.
图3显示了两侧连接界面形成的机械互锁结构示意图,机械互锁连接对于强化界面连接,提高接头稳定性起到了关键作用. 电池片侧钎料充分进入CGO孔洞结构有助于缓解界面应力,减少界面连接失效;钎料与铝化Crofer22H形成的机械互锁结构,充分发挥了粗糙表面在提高界面连接方面作用,提高了接头连接稳定性.
2.2 高温服役过程对接头组织的影响
2.2.1 接头组织在氧化性气氛中的稳定性
图4显示了焊后接头在空气气氛中800 ℃高温氧化300 h后的组织变化,分析表明,高温氧化并没有对接头组织造成明显的影响,在接头中未观察到裂纹或气孔缺陷,复合钎料与电池片和铝化Crofer22H均保持了紧固连接. 对电池片侧的连接界面(区域1)进行高倍观察结果如图4b所示,钎料基体Ag依然充分渗入CGO的孔洞结构,与YSZ电介质层可靠连接,电池片侧的机械互锁结构并没有受到破坏. Cu和Al元素的面扫描分析也确认,CuO,Al2O3和CuAl2O4相稳定性良好. 铝化不锈钢侧连接界面(区域2)分析结果如图4c所示,结果表明,经过长时间高温氧化后,Al2O3保护层依然致密连续,与不锈钢基体结合良好,结合不锈钢Fe,Cr和Mn元素的分布可知,在高温氧化服役过程,Al2O3保护层对不锈钢基体构成有效的保护,不锈钢基体未被氧化,有效阻隔了Fe,Cr和Mn元素向钎缝的扩散,确保了接头组织在高温氧化气氛中具备良好的稳定性.
2.2.2 接头组织在还原性气氛中的稳定性
焊后接头在4%H2-50%H2O-N2还原气氛中经过800 ℃/300 h的高温还原测试后,对接头组织进行观察,结果如图5所示. 分析表明,高温还原后两侧连接界面均未产生裂纹缺陷,依然与电池片和铝化Crofer22H保持良好连接,但是在钎缝中观察到了少量的孔洞缺陷,整个接头未检测到CuO相,这是由于氢气扩散进入钎料中,将CuO和CuAl2O4相还原成Cu,随后固溶在周围的Ag基体中,对孔洞周围的EDS点分析可以检测到4%Cu(原子分数),可以确认氢致还原过程的发生. 由于孔洞缺陷并没有相互连通,所以可以推断对接头的气密性并不会造成严重影响. 电池片侧的高温观察如图5b所示,分析表明,高温还原过程同样不会对电池片侧的机械互锁结构造成破坏,Ag基体充分进入CGO孔洞结构,与YSZ保持紧密连接,稳定的机械互锁结构确保了连接界面在高温服役过程不易失效. 图5c显示了铝化Crofer22H侧的放大图像和元素面分析,结果可知,Al2O3保护层在高温还原过程同样对Crofer22H基体构成了有效的保护,与基体紧固连接,避免了不锈钢元素向钎缝扩散,确保了接头组织稳定性. 总之,使用Ag-CuO-Al2O3复合钎料RAB连接获得的接头具备良好的组织稳定性,主要归因于以下因素:①不锈钢铝化后获得的Al2O3保护层对Crofer22H构成了有效保护,阻隔了Fe,Cr元素向钎缝扩散,避免接头在连接以及服役过程形成复杂反应产物;②复合钎料体系中Al2O3增强相在高温双重气氛下均具备优异稳定性,避免了钎缝组织物相变化;③两侧连接界面形成了两种机械互锁结构,可以有效避免高温服役阶段界面连接失效.
2.3 接头气密性分析
为了研究高温服役测试对接头气密性的影响,将样品在相同的氧化性气氛(空气)和还原性气氛(4%H2-50%H2O-N2)进行800 ℃/300 h高温老化后,对接头气密性进行了测试,获得的接头气体泄漏率如图6所示. 分析表明,接头在焊后以及高温老化测试后都具备了良好的气密性,气体泄漏率为2.1 × 10–5~ 2.7 × 10–3 sccm/cm. 虽然高温还原后接头形成了少量的氢致孔洞缺陷,但是由于没有形成连续的气体通道,所以对接头的气密性并没有造成影响,接头经过高温还原后依然保持了极低的气体泄漏率. 文中获得的接头气体泄漏率远低于文献报道中Ag-Al2O3[15]和Ag-Al2TiO5[9]复合钎料的气体泄漏率,纳米Al2O3增强Ag-CuO基复合钎料满足SOFC电池堆的高温服役需求.
3. 结论
(1) 使用Ag-CuO-Al2O3复合钎料实现了SOFC电池片与铝化Crofer22H的RAB连接,钎料充分渗入CGO孔洞结构与YSZ紧固结合,同时与铝化Crofer22H的粗糙表面结合良好,在两侧界面均形成了稳定的机械互锁连接.
(2) 接头组织经过800 ℃/300 h氧化(空气)和还原(H2-50H2O-N2)气氛服役后具备良好的稳定性,两侧界面的机械互锁结构确保了可靠的界面连接,Al2O3增强相稳定性良好,Al2O3保护层有效阻隔了不锈钢元素向钎缝的扩散.
(3) 接头焊后以及双重气氛高温服役后均保持极低的气体泄漏率(2.1 × 10–3~2.7 × 10–3sccm/cm),高温还原过程形成的不连续氢致孔洞缺陷并没有对接头气密性造成影响,满足SOFC电池堆气密性需求.
-
表 1 6061铝合金和AZ31镁合金的化学成分(质量分数,%)
Table 1 Chemical compositions of 6061 aluminum alloys and AZ31 magnesium alloys
材料 Si Fe Cu Mn Cr Zn Ti Ni Al Mg 6061 0.55 0.4 0.25 0.074 0.08 0.12 0.08 — 余量 0.8 AZ31 0.28 0.001 0.002 0.33 — 0.71 — 0.0005 2.8 余量 表 2 焊接工艺参数
Table 2 Welding process parameters
转速
n/(r·min−1)焊接速度
v/(mm·min−1)偏铝侧偏移量
d/mm下压量
h/mm倾角
α(°)450,550,650,
750,85020 0.3 0.2 2.5 表 3 WNZ内典型IMCs EDS分析结果(原子分数,%)
Table 3 EDS results of typical IMCs in WNZ
位置 Al Mg Ni 相 1 57.52 42.28 0.20 Al3Mg2 2 56.29 42.60 1.11 Al3Mg2 3 3.02 96.52 0.46 Mg基体 4 35.27 64.62 0.11 Al12Mg17 + Mg 5 2.16 92.47 5.37 Mg2Ni + Mg -
[1] Zhao Y, Lu Z P, Yan K, et al. Microstructural characterizations and mechanical properties in underwater friction stir welding of aluminum and magnesium dissimilar alloys[J]. Materials & Design, 2015, 65: 675 − 681.
[2] 陈影, 沈长斌, 葛继平. Mg/Al异种金属焊接的研究现状[J]. ·稀有金属材料与工程, 2012, 41(supplement 2): 109 − 11. Chen Ying, Shen Changbin, Ge Jiping. Research progress on the welding of Mg/Al dissimilar metals[J]. Rare Metal Materials and Engineering, 2012, 41(supplement 2): 109 − 11.
[3] Dorbane A, Mansoor B, Ayoub G, et al. Mechanical, microstructural and fracture properties of dissimilar welds produced by friction stir welding of AZ31B and Al6061[J]. Materials Science & Engineering A, 2015, 650: 720 − 733.
[4] Rao H M, Ghaffari B, Yuan W, et al. Effect of process parameters on microstructure and mechanical behaviors of friction stir linear welded aluminum to magnesium[J]. Materials Science & Engineering A, 2016, 651: 27 − 36.
[5] Fu B L, Qin G L, Li F. Friction stir welding process of dissimilar metals of 6061-T6 aluminum alloy to AZ31B magnesium alloy[J]. Journal of Materials Processing Technology, 2015, 218: 38 − 47. doi: 10.1016/j.jmatprotec.2014.11.039
[6] Mo S X, Dong S K, Zhu H, et al. Corrosion behavior of aluminum/steel dissimilar metals friction stir welding joint[J]. China Welding, 2021, 30(3): 20 − 30.
[7] 许志武, 李政玮, 冯艳, 等. 静轴肩辅助铝镁搅拌摩搭接接头的组织与性能[J]. 焊接学报, 2017, 38(4): 1 − 6. Xu Zhiwu, Li Zhengwei, Feng Yan, et al. Microstructure and mechanical properties of Mg/Al friction stir lap welding joint assisted by stationary shoulder[J]. Transactions of the China Welding Institution, 2017, 38(4): 1 − 6.
[8] 李达, 孙明辉, 崔占全. 工艺参数对铝镁搅拌摩擦焊焊缝成形质量的影响[J]. 焊接学报, 2011, 32(8): 97 − 100. Li Da, Sun Minghui, Cui Zhanquan. Effect of parameters on friction stir welding joint of Al and Mg[J]. Transactions of the China Welding Institution, 2011, 32(8): 97 − 100.
[9] Verma J, Taiwade R V, Reddy C, et al. Effect of friction stir welding process parameters on Mg-AZ31B/Al-AA6061 joints[J]. Materials and Manufacturing Processes, 2018, 33(3): 308 − 314. doi: 10.1080/10426914.2017.1291957
[10] Sachin K, Wu C S. Suppression of intermetallic reaction layer by ultrasonic assistance during friction stir welding of Al and Mg based alloys[J]. Journal of Alloys and Compounds, 2020, 827: 154343. doi: 10.1016/j.jallcom.2020.154343
[11] Boccarusso L, Astarita A, Carlone P, et al. Dissimilar friction stir lap welding of AA 6082-Mg AZ31: Force analysis and microstructure evolution[J]. Journal of Manufacturing Processes, 2019, 44: 376 − 388. doi: 10.1016/j.jmapro.2019.06.022
[12] Sun T, Wu S Y, Shen Y F, et al. Effect of traverse speed on the defect characteristic, microstructure, and mechanical property of friction stir welded T-joints of dissimilar Mg/Al alloy[J]. Advances in Materials Science and Engineering, 2020, 2020(3): 1 − 15.
[13] Bandi A, Bakshi S R. Effect of pin length and rotation speed on the microstructure and mechanical properties of friction stir welded lap joints of AZ31B-H24 Mg alloy and AA6061-T6 Al alloy[J]. Metallurgical and Materials Transactions A, 2020, 51(12): 6269 − 6282. doi: 10.1007/s11661-020-06020-8
[14] Niu S Y, Ji S D, Yan D J, et al. AZ31B/7075-T6 alloys friction stir lap welding with a zinc interlayer[J]. Journal of Materials Processing Technology, 2019, 263: 82 − 90. doi: 10.1016/j.jmatprotec.2018.08.009
[15] Gan R G, Jin Y H. Friction stir-induced brazing of Al/Mg lap joints with and without Zn interlayer[J]. Science and Technology of Welding and Joining, 2018, 23(2): 164 − 171. doi: 10.1080/13621718.2017.1354545
[16] Zheng B, Zhao L, Lv Q Q, et al. Effect of Sn interlayer on mechanical properties and microstructure in Al/Mg friction stir lap welding with different rotational speeds[J]. Materials Research Express, 2020, 7(7): 076504. doi: 10.1088/2053-1591/ab9fbb
[17] Liu J L, Niu S Y, Ren R, et al. Improving joint morphologies and tensile strength of Al/Mg dissimilar alloys friction stir lap welding by changing zn interlayer thickness[J]. Acta Metallurgica Sinica (English Letters), 2019, 32(11): 1385 − 1395. doi: 10.1007/s40195-019-00937-9
[18] Zhang J, Luo G Q, Wang Y Y, et al. An investigation on diffusion bonding of aluminum and magnesium using a Ni interlayer[J]. Materials Letters, 2012, 83: 189 − 191. doi: 10.1016/j.matlet.2012.06.014
[19] Shi H, Chen K, Liang Z Y, et al. Intermetallic compounds in the banded structure and their effect on mechanical properties of Al/Mg dissimilar friction stir welding joints[J]. Journal of Materials Science and Technology, 2017, 33(4): 359 − 366. doi: 10.1016/j.jmst.2016.05.006
[20] 朱浩, 张二龙, 莫淑娴, 等. 带状组织对铝/镁异种金属搅拌摩擦焊接头力学性能的影响[J]. 焊接学报, 2020, 41(1): 34 − 38,66. Zhu Hao, Zhang Erlong, Mo Shuxian, et al. Effect of banded structure on mechanical properties of aluminum/magnesium dissimilar metal friction stir welding joint[J]. Transactions of the China Welding Institution, 2020, 41(1): 34 − 38,66.
[21] Dupin N, Ansara I, Sundman B. Thermodynamic re-assessment of the ternary system Al-Cr-Ni[J]. Calphad, 2001, 25(2): 279 − 298. doi: 10.1016/S0364-5916(01)00049-9
[22] Peng P, Wang W, Zhang T, et al. Effects of interlayer metal on microstructures and mechanical properties of friction stir lap welded dissimilar joints of magnesium and aluminum alloys[J]. Journal of Materials Processing Technology, 2021, 299: 117362.
[23] Hajjari E, Divandari M, Razavi S H, et al. Dissimilar joining of Al/Mg light metals by compound casting process[J]. Journal of Materials Science, 2011, 46(20): 6491 − 6499. doi: 10.1007/s10853-011-5595-4
[24] Chang W S, Rajesh S R, Chun C K, et al. Microstructure and mechanical properties of hybrid laser-friction stir welding between AA6061-T6 Al alloy and AZ31 Mg alloy[J]. Journal of Materials Science and Technology, 2011, 27(3): 199 − 204. doi: 10.1016/S1005-0302(11)60049-2
-
期刊类型引用(1)
1. 司晓庆,苏毅,李淳,亓钧雷,曹健. BaCe_(0.7)Zr_(0.1)Y_(0.1)Yb_(0.1)O_(3-δ)质子导电陶瓷与不锈钢的空气反应钎焊分析. 焊接学报. 2022(11): 8-14+163 . 本站查看
其他类型引用(1)