高级检索

AZ31镁合金双面对称搅拌摩擦焊接头疲劳性能

闫志峰, 王卓然, 王树邦, 张红霞, 贺秀丽, 董鹏

闫志峰, 王卓然, 王树邦, 张红霞, 贺秀丽, 董鹏. AZ31镁合金双面对称搅拌摩擦焊接头疲劳性能[J]. 焊接学报, 2022, 43(6): 61-68. DOI: 10.12073/j.hjxb.20211119001
引用本文: 闫志峰, 王卓然, 王树邦, 张红霞, 贺秀丽, 董鹏. AZ31镁合金双面对称搅拌摩擦焊接头疲劳性能[J]. 焊接学报, 2022, 43(6): 61-68. DOI: 10.12073/j.hjxb.20211119001
YAN Zhifeng, WANG Zhuoran, WANG Shubang, ZHANG Hongxia, HE Xiuli, DONG Peng. Fatigue properties of AZ31 magnesium alloy welded joint by double-sided friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(6): 61-68. DOI: 10.12073/j.hjxb.20211119001
Citation: YAN Zhifeng, WANG Zhuoran, WANG Shubang, ZHANG Hongxia, HE Xiuli, DONG Peng. Fatigue properties of AZ31 magnesium alloy welded joint by double-sided friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(6): 61-68. DOI: 10.12073/j.hjxb.20211119001

AZ31镁合金双面对称搅拌摩擦焊接头疲劳性能

基金项目: 山西省应用基础研究计划项目(201801D221137, 201601D202028)
详细信息
    作者简介:

    闫志峰,博士,副教授;主要从事焊接疲劳方面的科研和教学工作; Email: yanzhifeng@tyut.edu.cn

    通讯作者:

    张红霞,博士,教授,博士研究生导师; Email: zhanghongxia@tyut.edu.cn.

  • 中图分类号: TG 405

Fatigue properties of AZ31 magnesium alloy welded joint by double-sided friction stir welding

  • 摘要: 针对搅拌摩擦单面焊两侧热输入不均匀性导致疲劳强度低的问题,采用双面对称搅拌摩擦焊方法对10 mm厚的AZ31镁合金板材进行焊接,并研究其疲劳性能. 结果表明,双面对称搅拌摩擦焊接头的屈服强度为130 MPa,与单面焊的屈服强度123 MPa相比提高了5%;其疲劳极限为88 MPa,比单面焊接头的50 MPa提高了76%;双面对称接头疲劳裂纹萌生在上/下侧的前进侧位置,并跨越上/下侧焊缝交界面,最终在下/上侧焊缝的后退侧RS区域瞬断,其疲劳断口均为以解理特征为主的脆性断裂. 双面对称焊接头其中一面应变范围与单面搅拌摩擦焊的应变较高的后退侧接近. 通过双面搅拌摩擦焊接的镁合金接头疲劳强度得到了大幅度提升,疲劳寿命得到了延长.
    Abstract: In order to solve the problem of the low fatigue strength of single-sided welding (SSFSW) caused by the uneven heat input, double-sided friction stir welding (DSFSW) was used to weld AZ31 magnesium alloy with a thickness of 10 mm. The results show that the yield strength of DSFSW joint is 130 MPa, which is 5% higher than that of the SSFSW joint. The fatigue limit of the DSFSW joint is 88 MPa, which is 76% higher than that of the SSFSW joint. The fatigue crack of DSFSW joint starts at the advancing side of the upper/lower side, crossing the interface of the upper/lower weld seam and breaking in the retreating side (RS) of the one weld seam finally. The fatigue fracture surface of DSFSW is brittle fracture mainly composed of cleavage. The strain range of one side of DSFSW joint is close to the RS strain of SSFSW. The fatigue strength and life of magnesium alloy joint welded by DSFSW have been greatly increased.
  • 图  1   双面FSW焊接过程及接头截面区域分布

    Figure  1.   DSFSW welding process and joint cross section area distribution. (a) DSFSW welding process; (b) cross section area distribution of joint

    图  2   DSFSW接头横截面不同区域微观组织

    Figure  2.   Microstructure of various zones on the cross-section of DSFSW joint. (a) HAZ on the AS of the upper side weld; (b) HAZ on the RS of the lower side weld; (c) TMAZ on the AS of the upper side weld; (d) TMAZ on the RS of the lower side weld; (e) NZ

    图  3   AZ31镁合金拉伸裂纹示意图

    Figure  3.   Schematic diagram of tensile crack of AZ31 magnesium alloy. (a) SSFSW joint; (b) DSFSW joint

    图  4   AZ31镁合金接头疲劳S-N曲线

    Figure  4.   Fatigue S-N curve of AZ31 magnesium alloy joint

    图  5   SSFSW疲劳断口宏观形貌

    Figure  5.   Macro fatigue crack

    图  6   SSFSW接头疲劳断口形貌及疲劳裂纹

    Figure  6.   Fatigue fracture morphology and fatigue crack of SSFSW joint. (a) fracture surface at crack initiation stage; (b) partial enlargement of Fig.6a; (c) fatigue striation; (d) cleavage plane in fatigue fracture; (e) fracture apperance of instantaneous fracture area

    图  7   DSFSW接头宏观断口形貌

    Figure  7.   Fractograph of fracture surface for DSFSW

    图  8   DSFSW接头疲劳断口形貌及疲劳裂纹

    Figure  8.   Fatigue fracture morphology and fatigue crack of DSFSW joint. (a) enlargement of region A; (b) enlargement of region B; (c) enlargement of region C

    图  9   AZ31镁合金接头疲劳应力-应变曲线

    Figure  9.   Fatigue stress-strain curve of AZ31 Mg alloy joint. (a) SSFSW; (b) DSFSW

    图  10   AZ31镁合金接头疲劳过程受力示意图

    Figure  10.   Stress diagram of AZ31 Mg alloy joint during the fatigue process. (a) sample loading; (b) SSFSW; (c) DSFSW

    图  11   AZ31镁合金接头AS HAZ的EBSD结果分析

    Figure  11.   EBSD analysis results of AS HAZ on AZ31 Mg alloy joint. (a) Schmid factor distribution; (b) microstructure

    图  12   AZ31镁合金接头RS HAZ的EBSD结果分析

    Figure  12.   EBSD analysis results of RS HAZ on AZ31 Mg alloy joint. (a) Schmid factor distribution; (b) microstructure

    表  1   AZ31镁合金化学成分(质量分数,%)

    Table  1   Chemical compositions of AZ31 Mg alloy

    AlMnZnCaSiCuNiMg
    3.020.61.100. 040.10.010.001余量
    下载: 导出CSV

    表  2   AZ31镁合金的力学性能

    Table  2   Mechanical properties of AZ31 Mg alloy

    抗拉强度
    Rm/MPa
    屈服强度
    Rp0.2/MPa
    断后伸长率
    A(%)
    断面收缩率
    Z(%)
    24214019.014.5
    下载: 导出CSV

    表  3   焊接设备参数

    Table  3   Welding equipment parameters

    焊接
    方法
    搅拌头轴肩直径
    d0/mm
    搅拌针
    d1/mm
    搅拌针最大直径
    dmax/mm
    单面焊209.8510
    双面焊204.855
    下载: 导出CSV

    表  4   优化的焊接参数

    Table  4   Optimized welding parameters

    焊接方法搅拌速度w/( r·min−1)焊接速度v/(mm·min−1)
    单面焊750300
    双面焊1 200300
    下载: 导出CSV
  • [1] 许楠, 冯若男, 宋亓宁, 等. 微观组织对镁合金FSW焊缝应变硬化行为的影响[J]. 焊接学报, 2020, 41(11): 7−12.

    Xu Nan, Feng Ruonan, Song Qining, et al. Effects of microstructure on strain hardening behavior offriction stir welded magnesium alloy[J]. Transactions of the China Welding Institution, 2020, 41(11): 7−12.

    [2] 郭少飞, 刘雪松, 张红霞, 等. 基于能量耗散的AZ31B镁合金接头疲劳极限快速评估[J]. 焊接学报, 2020, 41(12): 38 − 43. doi: 10.12073/j.hjxb.20200919002

    Guo Shaofei, Liu Xunsong, Zhang Hongxia, et al. Rapid evaluation of fatigue limit of AZ31B magnesium alloy joints based on energy dissipation[J]. Transactions of the China Welding Institution, 2020, 41(12): 38 − 43. doi: 10.12073/j.hjxb.20200919002

    [3]

    Kamal M, Rahman M M. Advances in fatigue life modeling: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 82(1): 940 − 949.

    [4] 魏巍, 孙屹博, 杨光, 等. 基于能量耗散的Q460焊接接头疲劳强度评估[J]. 焊接学报, 2021, 42(4): 49 − 55. doi: 10.12073/j.hjxb.20200907001

    Wei Wei, Sun Yibo, Yang Guang, et al. Fatigue strength evaluation of Q460 weld joints based on energy dissipation[J]. Transactions of the China Welding Institution, 2021, 42(4): 49 − 55. doi: 10.12073/j.hjxb.20200907001

    [5]

    Meng X C, Huang Y X, Cao J, et al. Recent progress on control strategies for inherent issues in friction stir welding[J]. Progress in Materials Science, 2020, 115: 100706.

    [6] 秦丰, 周军, 侯振国, 等. 6082铝合金双面搅拌摩擦焊接头组织与性能[J]. 焊接学报, 2021, 42(2): 75 − 80. doi: 10.12073/j.hjxb.20201231001

    Qin Feng, Zhou Jun, Hou Zhenguo, et al. Research on microstructure and properties of double-sided friction stir welding joint of 6082 aluminum alloy[J]. Transactions of the China Welding Institution, 2021, 42(2): 75 − 80. doi: 10.12073/j.hjxb.20201231001

    [7]

    Kulwant S, Gurbhinder S, Harmeet S. Review on friction stir welding of magnesium alloys[J]. Journal of Magnesium and Alloys, 2018, 6(4): 399 − 416. doi: 10.1016/j.jma.2018.06.001

    [8]

    Haghshenas M, Gerlich A P. Joining of automotive sheet materials by friction-based welding methods: A review[J]. Engineering Science and Technology, an International Journal, 2018, 21(1): 130 − 148. doi: 10.1016/j.jestch.2018.02.008

    [9]

    Liu X C, Zhen Y Q, Sun Y F, et al. Local inhomogeneity of mechanical properties in stir zone of friction stir welded AA1050 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(9): 2369 − 2380. doi: 10.1016/S1003-6326(20)65385-7

    [10]

    Mabuwa S, Msomi V. Fatigue behaviour of the multi-pass friction stir processed AA8011-H14 and AA6082-T651 dissimilar joints[J]. Engineering Failure Analysis, 2020, 118: 104876. doi: 10.1016/j.engfailanal.2020.104876

    [11] 陈洪胜, 王文先, 陈伟, 等. 镁/铝层合板FSW接头微观组织及力学性能[J]. 焊接学报, 2020, 41(3): 38 − 44.

    Chen Hongsheng, Wang Wenxian, Chen Wei, et al. Microstructure and mechanical properties of FSW joint of Mg/Al clad sheets[J]. Transactions of the China Welding Institution, 2020, 41(3): 38 − 44.

    [12]

    Darmadi D B, Talice M. Improving the strength of friction stir welded joint by double side friction welding and varying pin geometry[J]. Engineering Science and Technology an International Journal, 2021, 24(3): 637 − 647. doi: 10.1016/j.jestch.2020.11.001

    [13]

    Thakur A, Sharma V, Bhadauria S S. Effect of tool tilt angle on weld joint strength and microstructural characterization of double-sided friction stir welding of AZ31B magnesium alloy[J]. CIRP Journal of Manufacturing Science and Technology, 2021, 35: 132 − 145. doi: 10.1016/j.cirpj.2021.05.009

    [14]

    Wang X P, Yoshiaki M. Interface development and microstructure evolution during double-sided friction stir spot welding of magne- sium alloy by adjustable probes and their effects on mechanical properties of the joint[J]. Journal of Materials Processing Technology, 2021, 296: 117104.

    [15] 马宗义, 商乔, 倪丁瑞, 等. 镁合金搅拌摩擦焊接的研究现状与展望[J]. 金属学报, 2018, 54(11): 1597 − 1617. doi: 10.11900/0412.1961.2018.00392

    Ma Zongyi, Shang Qiao, Ni Dingrui, et al. Friction stir welding of magnesium alloys: a review[J]. Acta Metallurgica Sinica, 2018, 54(11): 1597 − 1617. doi: 10.11900/0412.1961.2018.00392

    [16] 周利, 张仁晓, 舒凤远, 等. Q235钢搅拌摩擦焊接头微观组织与力学性能分析[J]. 焊接学报, 2019, 40(3): 80 − 84. doi: 10.12073/j.hjxb.2019400076

    Zhou Li, Zhang Renxiao, Shu Fengyuan, et al. Microstructure and mechanical properties of friction stir welded joint of Q235 steel[J]. Transactions of the China Welding Institution, 2019, 40(3): 80 − 84. doi: 10.12073/j.hjxb.2019400076

    [17]

    Ashtiani H, Shayanpoor A A. New constitutive equation utilizing grain size for modeling of hot deformation behavior of AA1070 aluminum[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(2): 345 − 357. doi: 10.1016/S1003-6326(21)65500-0

    [18]

    Li L, Yang J, Yang Z Y, et al. Towards revealing the relationship between deformation twin and fatigue crack initiation in a rolled magnesium alloy[J]. Materials Characterization, 2021, 179: 111362. doi: 10.1016/j.matchar.2021.111362

    [19]

    Yan Zhifeng , Wang Denghui, He Xiuli, et al. Deformation behaviors and cyclic strength assessment of AZ31B magnesium alloy based on steady ratcheting effect[J]. Materials Science & Engineering:A, 2018, 723(18): 212 − 220.

  • 期刊类型引用(4)

    1. 郑伟,路向琨. 压力采集滤波系统在铝合金电阻点焊中的研究及应用. 热加工工艺. 2024(15): 49-52+58 . 百度学术
    2. 于鹏,蔡正标,赵明明,刘鹏,张文明. 基于焊接电信号频域特征的焊接过程稳定性评估. 焊接学报. 2023(04): 105-110+135-136 . 本站查看
    3. 赵大伟,王元勋,梁东杰,Yuriy Bezgans. 基于功率信号动态特征的钛合金电阻点焊熔核直径预测. 焊接学报. 2022(01): 55-59+116-117 . 本站查看
    4. 刘倩雯,张南峰,阮洁珊,叶广文,张艳喜,高向东. 电阻点焊质量检测技术研究现状. 精密成形工程. 2022(05): 83-93 . 百度学术

    其他类型引用(3)

图(12)  /  表(4)
计量
  • 文章访问数:  338
  • HTML全文浏览量:  41
  • PDF下载量:  52
  • 被引次数: 7
出版历程
  • 收稿日期:  2021-11-18
  • 网络出版日期:  2022-04-18
  • 刊出日期:  2022-07-07

目录

    /

    返回文章
    返回