高级检索

腐蚀环境下自冲铆接头竞争失效机制及力学性能分析

杨进, 邢保英, 何晓聪, 曾凯, 周路

杨进, 邢保英, 何晓聪, 曾凯, 周路. 腐蚀环境下自冲铆接头竞争失效机制及力学性能分析[J]. 焊接学报, 2022, 43(7): 69-75. DOI: 10.12073/j.hjxb.20211024002
引用本文: 杨进, 邢保英, 何晓聪, 曾凯, 周路. 腐蚀环境下自冲铆接头竞争失效机制及力学性能分析[J]. 焊接学报, 2022, 43(7): 69-75. DOI: 10.12073/j.hjxb.20211024002
YANG Jin, XING Baoying, HE Xiaocong, ZENG Kai, ZHOU Lu. Analysis of competitive failure mechanisms and mechanical properties of self-piercing riveted joints in corrosive environments[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(7): 69-75. DOI: 10.12073/j.hjxb.20211024002
Citation: YANG Jin, XING Baoying, HE Xiaocong, ZENG Kai, ZHOU Lu. Analysis of competitive failure mechanisms and mechanical properties of self-piercing riveted joints in corrosive environments[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(7): 69-75. DOI: 10.12073/j.hjxb.20211024002

腐蚀环境下自冲铆接头竞争失效机制及力学性能分析

基金项目: 国家自然科学基金资助项目(52065034);云南省应用基础研究青年项目(14051848).
详细信息
    作者简介:

    杨进,硕士;主要从事薄板材料连接新技术研究; Email: jin_kust@163. com

    通讯作者:

    邢保英,博士,副教授; Email: xbb0808@163. com.

  • 中图分类号: TG 447

Analysis of competitive failure mechanisms and mechanical properties of self-piercing riveted joints in corrosive environments

  • 摘要: 为研究腐蚀环境下自冲铆接头失效模式的转变机理和力学性能特征,采用0.6 mol/L的NaCl溶液对多组自冲铆接头进行周浸腐蚀试验,通过力学测试和扫描电子显微镜对接头的力学性能及失效模式进行分析. 结果表明,异质接头的失效模式随腐蚀周期延长由 Ⅰ 向 Ⅲ 转变,转变速率取决于接头材质,同质接头的失效模式不受腐蚀周期的影响. 短期腐蚀下,搭接区板间腐蚀产物使得同质和异质接头失效载荷均有所上升;异质接头上升幅度较大,腐蚀后期其失效载荷较同质接头损失严重. 异质接头稳定性较差,凸模制备的同质组合接头较平模稳定性好. 异质接头电化学腐蚀剧烈,下板铆接点底部材料的脱落由应力集中所产生的撕裂纹所致.
    Abstract: In order to study the transition mechanism and mechanical properties of the failure mode of self-piercing riveted joints in corrosive environment, the 0. 6 mol/L NaCl solution was used to carry out the immersion corrosion test on several groups of self-piercing riveted joints. Mechanical properties and failure modes of joints are analyzed by mechanical testing and scanning electron microscopy. The results show that the failure mode of heterogeneous joints changes from Ⅰ to Ⅲ with the prolongation of corrosion cycle, and the transformation rate depends on the joint material, while the failure mode of homogeneous joints is not affected by the corrosion cycle. Under short-term corrosion, the inter-plate corrosion products of self-piercing riveted joints increase the failure load of both homogeneous and heterogeneous joints, the failure load of heterogeneous joints varies widely throughout the corrosion cycle. Heterogeneous joints are less stable, and homogeneous combination joints prepared by convex dies are more stable than flat dies. Heterogeneous joint electrochemical corrosion is intense, self-piercing riveted joints bottom material off by the stress concentration generated by the tear lines.
  • 随着国内海洋工程装备的快速发展,海洋平台的建设也逐渐向大型化的方向发展,所需要的钢板厚度日益增加,建造效率也随之加大. 为了提高焊接生产效率,大热输入焊接技术应运而生[1-2],气电立焊、电渣焊、单面埋弧焊等具有高效、安全可靠、便于自动化等优势的焊接技术得到越来越广泛的使用[3].

    在大热输入焊接条件下,焊接热影响区(HAZ)的峰值温度将达到1 350 ℃,减慢了冷却速度,增加了原奥氏体晶粒长大时间,导致热影响区粗晶区的组织将急剧粗化,最终对焊接接头的韧性产生不利的影响[4-8]. 其中,奥氏体晶粒长大及相变规律与焊接热影响区的最终组织以及焊接接头冲击性能密切相关,因此,对奥氏体晶粒长大及相变规律的研究将有助于控制相变后的组织,进而提高冲击性能[9].

    针状铁素体(IAF)是在低碳微合金钢的焊接热影响区组织中发现的,其大角度晶界的特点能有效阻碍钢中裂纹的扩展,提高钢的强度和韧性. 已有研究表明,不同种类的合金元素和夹杂物及其尺寸是影响焊接HAZ中IAF形核长大的主要因素,添加适当合金元素后形成的夹杂物,可以诱导IAF形核[10]. 对于低合金高强度钢,在大热输入焊接条件下,只有在0.2 ~ 20 μm范围内的夹杂物才可能作为有效的形核核心. 此外,IAF形核还与奥氏体晶粒的尺寸有关,但是对于不同的钢种,其利于IAF形核的最佳奥氏体晶粒尺寸也有所不同[11-13].

    目前大热输入焊接条件下TiNbV微合金钢的焊接HAZ奥氏体晶粒尺寸与IAF形核之间关系的规律研究缺乏,使得焊接工艺设计缺乏理论依据. 付魁军等人[14]利用热模拟技术研究了在焊接热输入下TiNb钢热影响区组织变化对韧性的影响规律,但是对晶粒的生长及相变过程仍缺乏认识.

    文中利用高温共聚焦显微镜原位观察方法研究奥氏体晶粒长大及相变规律,以期为大热输入钢的研发及应用提供理论依据.

    试验用钢为中试厂冶炼试验的大热输入TiNbV钢,其化学成分及力学性能分别如表1表2所示.

    表  1  试验用钢化学成分(质量分数,%)
    Table  1.  Chemical composition of the steel plate
    CSiMnPSNiNbAlTiN
    0.0790.21.450.003 60.001 50.160.0210.0180.0160.005 6
    下载: 导出CSV 
    | 显示表格
    表  2  试验用钢力学性能
    Table  2.  Mechanical properties of the steel plate
    屈服强度ReH/MPa抗拉强度Rm/MPa断后伸长率A(%)−40 ℃冲击吸收能量 AKV/J
    43552228310
    下载: 导出CSV 
    | 显示表格

    采用型号为VL2000DX-SVF17sp激光共聚焦显微镜对奥氏体晶粒长大及相变过程进行原位动态观察,可实现最快120桢/s的高速扫描. 加热采用1.5 kW卤素光源红外反射集光,可形成圆柱型超高温加热空间. 将试验用钢加工成ϕ7 mm × 3 mm(3 mm为板纵向方向)的圆片试样,上下表面用磨床磨平(绝对水平),柱面无明显划痕. 试样经180,200及500目金相砂纸打磨后进行抛光,用酒精冲洗并吹干备用. 把试样放置于显微镜加热台上. 为了更加清晰的观察奥氏体晶粒长大过程以及奥氏体晶粒尺寸对冷却过程中相变的影响,采用的热循环工艺为:以5 ℃/s的速度加热试样至1 400 ℃,分别保温5,100,300 s,然后以5 ℃/s的速度降温.

    在试验过程中随机取20个奥氏体晶粒尺寸不再变化的视场,采用截点法统计其晶粒尺寸. 观察冷却过程中的相变,找出IAF的转变的起止温度,计算IAF转变的温度区间. 原位观察试验完成后,对试样进行重新抛光,用4%的硝酸酒精溶液腐蚀10 s后,在型号为VHX-1000E的金相显微镜下观察不同保温时间条件下,试样的最终金相组织.

    图1为热循环过程特征温度点奥氏体晶粒原位拍摄的形貌,对应的高温停留时间为5 s. 从图1可以看出,在升温阶段,约1 100 ~ 1 300 ℃时,晶粒开始发生明显的长大;约1 300 ~ 1 400 ℃晶粒迅速长大,晶粒大小趋于均匀. 在降温阶段,约1 400 ~ 1 300 ℃时,晶粒仍有长大趋势;当温度低于1 300 ℃,晶粒长大不明显.

    图  1  热循环升温与降温阶段的奥氏体晶粒形貌
    Figure  1.  Austenite grain morphology during heating and cooling stages of thermal cycle. (a) 1 100 ℃; (b) 1 200 ℃; (c) 1 350 ℃; (d) 1 400 ℃; (e) 1 300 ℃; (f) 1 100 ℃

    热循环升温与降温阶段晶粒尺寸的变化如图2所示. 从图中可以看出,温度低于1 250 ℃时,晶粒尺寸变化不明显,低于15 μm;当温度超过1 250 ℃时,晶粒尺寸开始发生明显的长大,加热到1 300 ~1 400 ℃阶段,晶粒尺寸从30 μm迅速长大至约60 μm.

    图  2  热循环升温与降温阶段晶粒尺寸
    Figure  2.  Grain size during heating and cooling stages of thermal cycle

    文中观察到两种晶粒长大方式:几个小晶粒合并成一个大晶粒的长大方式(图3)和晶界移动长大方式(图4). 几个小晶粒合并成一个大晶粒的长大方式,主要发生在加热升温过程的1 300 ~ 1 400 ℃高温区,该阶段温度较高,晶粒长大的驱动力较大,能明显观察到小晶粒的晶界迅速消失,取而代之的是由几个小晶粒的轮廓构成的较大晶粒的晶界,该种晶粒长大方式使得晶粒迅速长大,晶粒尺寸可迅速增加几倍. 晶界移动的晶粒长大方式主要发生在冷却过程的高温阶段1 400 ~ 1 350 ℃温度区间内,该阶段的晶粒已经达到较大尺寸,晶粒长大的驱动力难以使小晶粒合并成一个大晶粒的方式长大,但可以明显观察到晶界缓慢的移动,在该种晶粒长大方式下,晶粒长大的速度很慢. 此外还可以观察到,即使冷却至1 300 ℃左右时,晶粒仍以这种方式长大,但长大速度十分缓慢.

    图  3  晶粒合并长大方式
    Figure  3.  Several small grains transform into a big grain. (a) before merging; (b) after merging
    图  4  晶界移动长大方式
    Figure  4.  Movement of grain boundary. (a) before migration; (b) after migration

    图5为热循环的相变过程. 从图中可以看出,当加热升温到一定温度时,首先发生由铁素体和珠光体向奥氏体的转变,当温度相对较低时,转变很不均匀,随着温度的提高,铁素体和珠光体向奥氏体的转变加快,最后完全转变为奥氏体. 随着温度的进一步提高,奥氏体化逐渐达到均匀. 当冷却降温时,初期组织仍保持奥氏体形式,当降温到一定温度时,开始发生由奥氏体向贝氏体的转变,转变过程非常迅速,转变完成后,全部为贝氏体组成.

    图  5  相变过程
    Figure  5.  Phase transformation process. (a) 860 ℃; (b) 960 ℃;(c) 650 ℃; (d) 600 ℃

    IAF转变的开始温度、终了温度变化趋势如图6所示. 从图6中可以看出,高温停留时间分别为5,100,300 s. 对应的最终奥氏体晶粒尺寸分别为76.66,129.6,191.65 μm,高温停留时间越长,奥氏体晶粒尺寸越大且长大速度逐渐降低. 这是由于随保温时间的增加,碳化物逐渐溶解并均匀化分布,使得奥氏体逐渐均匀化分布,且高温停留时间越长,溶解及均匀化速率越低,最终奥氏体形状与尺寸趋于稳定.

    图  6  IAF形成温度、终了随高温停留时间变化趋势
    Figure  6.  Trend of the formation and ending temperature of IAF with the change of high-temperature dwell time

    图6中还可以看出,延长高温停留时间,IAF开始形成的温度和形成终了的温度不断降低,形成温度区间不断减小. 这是由于IAF形核与奥氏体尺寸有关,当高温停留时间较短时(5 s),奥氏体晶界面积较大,IAF优先在晶界处形核. 随高温停留时间的延长,奥氏体尺寸增大,晶界总面积减少,阻碍了晶界铁素体的析出,而IAF在夹杂物上的形核析出比晶界铁素体的析出温度要低,因此,IAF终了温度随高温停留时间不断降低且降低趋势逐渐减小,IAF转变温度区间不断降低.

    贝氏体转变的开始温度、终了温度变化趋势如图7所示. 从图7中可以看出,延长高温停留时间,贝氏体开始形成的温度和形成终了的温度不断降低,形成温度区间不断减小. 这是由于随高温停留时间的延长,奥氏体尺寸与组织趋于稳定,当温度降低时,稳定的奥氏体难以在较高温度发生向贝氏体的转变,导致贝氏体形成温度降低. 贝氏体转变开始后,奥氏体迅速向贝氏体转变,且温度越低,转变越迅速. 因此,贝氏体终了温度随高温停留时间不断降低且降低趋势逐渐减小,贝氏体转变温度区间不断降低.

    图  7  贝氏体形成温度、终了温度随高温停留时间变化趋势
    Figure  7.  Trend of the formation and ending temperature of bainite with the change of high-temperature dwell time

    为了分析高温停留时间对冷却组织中IAF的含量的影响,对原位观察之后的试样进行了组织分析,其结果如图8所示. 从图8中可以看出,高温停留5 s时,冷却转变后的组织主要为多边形铁素体,贝氏体和IAF,组织相对细小且不均匀,铁素体分布不均匀. 高温停留100 s时,冷却转变的组织主要为先共析铁素体,贝氏体IAF,无多边形铁素体,其中贝氏体、含量降低,IAF含量有所增加,且铁素体晶粒明显长大,组织较为均匀. 高温停留300 s时,贝氏体含量显著降低,IAF含量降低,先共析铁素体较为粗大,组织更为均匀.

    图  8  不同高温停留时间下的金相组织
    Figure  8.  Metallographic structure under different holding time. (a) 5 s of holding time; (b) 100 s of holding time; (c) 300 s of holding time

    热循环过程中晶粒长大及相变随温度变化的模型如图9所示. 从图中可以看出,升温阶段,860 ℃开始发生奥氏体转变; 980 ℃奥氏体转变基本完成,但奥氏体分布并不均匀且尺寸较小,1 300 ~ 1 400 ℃晶粒迅速长大,均匀分布;降温阶段,在冷却过程的高温阶段1 400 ℃下,晶粒仍有长大趋势,温度低于1 300 ℃后,晶粒长大不明显;降温到660 ~ 580 ℃发生贝氏体转变,组织中产生多边形铁素体和针状铁素体,随转变的完成,铁素体含量逐渐增多. 降温阶段,降温到660 ~ 580 ℃发生贝氏体转变,组织中产生多边形铁素体和针状铁素体,随转变的完成,铁素体含量逐渐增多,奥氏体晶粒的大小对贝氏体转变后的组织形貌有直接影响,奥氏体晶粒大小决定了贝氏体板条束的最大长度.

    图  9  热循环过程中晶粒长大及相变随温度变化的模型
    Figure  9.  Modeling of the growth and phase transformation of the grains in HAZ with the heating temperature during thermal cycling. (a) original structure; (b) austenitic transition begins at 860 °C; (c) austenitic transition ends at 980 °C; (d) rapid growth of austenite at 1 300 °C; (e) grains merge at 1 400 °C; (f) grains migrate at 1 300 °C; (g) bainite transition begins at 660 °C; (h) bainite transition ends at 580 °C

    (1) TiNbV钢在加热升温过程中,奥氏体晶粒的长大趋势呈现先明显后缓慢的规律,升温至1 100 ℃以上,奥氏体晶粒开始有明显长大的趋势;升温至1 300 ~ 1 400 ℃,晶粒主要以合并长大方式迅速长大. 在冷却降温过程中,约在1 400 ~ 1 350 ℃,奥氏体晶粒以晶界迁移方式长大,呈现缓慢趋势.

    (2) TiNbV钢在焊接热循环过程中,发生了奥氏体和贝氏体转变,加热至860 ℃时,开始发生奥氏体转变,加热至980 ℃,奥氏体转变基本完成,冷却到660 ~ 580 ℃,发生贝氏体转变,奥氏体晶粒大小决定了贝氏体板条束的最大长度.

    (3) 高温停留时间对相转变温度和组织具有一定程度的影响,高温停留延长,奥氏体晶粒尺寸增大,IAF与贝氏体形成、终了温度及温度区间均有降低,冷却组织中贝氏体含量降低,先共析铁素体含量增加,IAF含量先增加后减少,组织出现均匀粗化趋势. 当高温停留时间为100 s时,组织中出现大量IAF,将会获得较好的冲击韧性.

  • 图  1   铆钉及模具几何尺寸(mm)

    Figure  1.   Geometric sizes of rivet and die. (a) rivet; (b) flat bottom die; (c) concave bottom die

    图  2   试件结构示意图 (mm)

    Figure  2.   Schematic diagram of specimen structure

    图  3   接头的失效模式

    Figure  3.   Failure modes of the joints. (a) AA; (b) DA5; (c) PAA; (d) DA7

    图  4   接头失效模式Ⅲ的发生率

    Figure  4.   Incidence rate of failure mode Ⅲ

    图  5   接头的载荷-位移曲线

    Figure  5.   Load-displacement curves of joints. (a) PAA; (b) AA; (c) DA5; (d) DA7

    图  6   接头的失效载荷

    Figure  6.   Failure load of the joints. (a) PAA and AA; (b) DA5 and DA7

    图  7   接头的强度降低系数

    Figure  7.   Load reduction coefficient of the joints

    图  8   DA5组接头下板断口形貌

    Figure  8.   Fracture morphology of lower sheet of DA5 joints. (a) 0 h (failure mode Ⅰ); (b) 360 h [(failure mode Ⅱ (up), failure mode Ⅲ (down)]; (c) 720 h (failure mode Ⅲ); (d) 1 080 h (failure mode Ⅲ)

    图  9   DA7组接头下板断口形貌

    Figure  9.   Fracture morphology of lower sheet of DA7 joints. (a) 0 h (failure mode Ⅰ); (b) 360 h (failure mode Ⅰ); (c) 720 h [(failure mode Ⅰ (up), failure mode Ⅲ (down)]; (d) 1 080 h [(failure mode Ⅰ (up), failure mode Ⅲ (down)]

    表  1   接头组合方式及名称

    Table  1   Combination method and name of the joints

    试件名称上板下板模具类型
    PAAAA5052AA5052平模
    AAAA5052AA5052凸模
    DA5DP590AA5052凸模
    DA7DP590AA7075凸模
    下载: 导出CSV
  • [1] 李永兵, 马运五, 楼铭, 等. 轻量化薄壁结构点连接技术研究进展[J]. 机械工程学报, 2020, 56(6): 125 − 146. doi: 10.3901/JME.2020.06.125

    Li Yongbing, Ma Yunwu, Lou Ming, et al. Advances in spot joining technologies of lightweight thin-walled structures[J]. Journal of Mechanical Engineering, 2020, 56(6): 125 − 146. doi: 10.3901/JME.2020.06.125

    [2] 魏文杰, 何晓聪, 张先炼, 等. DP780/AA6061薄板自冲铆接头微动损伤特性[J]. 机械工程学报, 2020, 56(6): 169 − 175. doi: 10.3901/JME.2020.06.169

    Wei Wenjie, He Xiaocong, Zhang Xianlian, et al. Characteristics of fretting damage in hybrid DP780/AA6061 self-piercing riveted joints[J]. Journal of Mechanical Engineering, 2020, 56(6): 169 − 175. doi: 10.3901/JME.2020.06.169

    [3] 曾凯, 何晓聪, 邢保英. 钉脚张开度对自冲铆构件机械内锁刚度的影响[J]. 焊接学报, 2019, 40(6): 143 − 147.

    Zeng Kai, He Xiaocong, Xing Baoying. Effect of the degree of rivet opening on the rigidity of the interlock in self-piercing riveting joints[J]. Transactions of the China Welding Institution, 2019, 40(6): 143 − 147.

    [4]

    Pan B, Sun H, Shang S L, et al. Corrosion behavior in aluminum/galvanized steel resistance spot welds and self-piercing riveting joints in salt spray environment[J]. Journal of Manufacturing Processes, 2021, 70: 608 − 620. doi: 10.1016/j.jmapro.2021.08.052

    [5] 马青娜, 邵飞, 白林越, 等. 7075铝合金FSW接头腐蚀疲劳性能及断裂特征[J]. 焊接学报, 2020, 41(6): 72 − 77.

    Ma Qingna, Shao Fei, Bai Linyue, et al. Study on corrosion fatigue properties and fracture characteristics of 7075 aluminum alloy FSW joint[J]. Transactions of the China Welding Institution, 2020, 41(6): 72 − 77.

    [6]

    Calabrese L, Proverbio E, Pollicino E, et al. Effect of galvanic corrosion on durability of aluminum/steel self-piercing rivet joints[J]. Corrosion Engineering Science and Technology, 2015, 50(1): 10 − 17.

    [7] 冯震, 邢保英, 何晓聪, 等. 盐性环境下铝合金自冲铆接头的疲劳特性及寿命预测[J]. 材料导报, 2022, 36(1): 149 − 153.

    Feng Zhen, Xing Baoying, He Xiaocong, et al. Fatigue characteristics and life prediction of aluminum alloy self-piercing riveted joints in salt environment[J]. Materials Reports, 2022, 36(1): 149 − 153.

    [8]

    Kang M J, Cheolhee K, Kim J K, et al. Corrosion assessment of Al/Fe dissimilar metal joint[J]. Journal of Welding and Joining, 2014, 32(4): 55 − 62. doi: 10.5781/JWJ.2014.32.4.55

    [9]

    Calabrese L, Bonaccorsi L, Proverbio E, et al. Durability on alternate immersion test of self-piercing riveting aluminium joint[J]. Materials and Design, 2013(46): 849 − 856.

    [10]

    Calabrese L, Proverbio G, Bella D, et al. Failure behavior of SPR joints after salt spray test[J]. Engineering Structures, 2015, 82: 33 − 43. doi: 10.1016/j.engstruct.2014.10.020

    [11] 谢志强, 张爱林, 闫维明, 等. 薄壁钢板自冲铆接受剪性能及承载力计算方法研究[J]. 工程力学, 2020, 37(6): 234 − 245.

    Xie Zhiqiang, Zhang Ailin, Yan Weiming, et al. The shear behavior and calculation method of self-piercing riveted connections on thin-walled steel sheets[J]. Engineering Mechanics, 2020, 37(6): 234 − 245.

    [12]

    Mo Shuxian, Dong Shaokang, Zhu Hao, et al. Corrosion behavior of aluminum/steel dissimilar metals friction stir welding joint[J]. China Welding, 2021, 30(3): 20 − 30.

    [13]

    Fiore V, Calabrese L, Proverbio E, et al. Salt spray fog ageing of hybrid composite/metal rivet joints for automotive applications[J]. Composites Part B, 2017, 108: 65 − 74.

    [14] 钟群鹏, 赵子华. 断口学[M]. 北京: 高等教育出版社, 2006.

    Zhong Qunpeng, Zhao Zihua. Fractography [M]. Beijing: Higher Education Press, 2006.

  • 期刊类型引用(3)

    1. 陈腾升,张莉芹,胡锋,童明伟,吉梅锋,胡磊. 镁处理对CGHAZ冲击韧性及裂纹扩展的影响. 钢铁. 2023(01): 141-152 . 百度学术
    2. 方乃文,郭二军,徐锴,尹立孟,黄瑞生,马一鸣,武鹏博. 钛合金激光填丝焊缝晶粒生长及相变原位观察. 中国有色金属学报. 2022(06): 1665-1672 . 百度学术
    3. 闫涵,赵迪,祁同福,冷雪松,付魁军,胡奉雅. 元素Nb对TiNbV微合金钢CGHAZ组织与冲击韧性影响. 焊接学报. 2020(12): 33-37+99 . 本站查看

    其他类型引用(2)

图(9)  /  表(1)
计量
  • 文章访问数:  410
  • HTML全文浏览量:  29
  • PDF下载量:  70
  • 被引次数: 5
出版历程
  • 收稿日期:  2021-10-23
  • 网络出版日期:  2022-04-28
  • 刊出日期:  2022-07-24

目录

/

返回文章
返回