高级检索

氮气辅助316L不锈钢激光-MIG复合焊接组织与耐蚀性能

仲杨, 郑志镇, 李建军, 张华

仲杨, 郑志镇, 李建军, 张华. 氮气辅助316L不锈钢激光-MIG复合焊接组织与耐蚀性能[J]. 焊接学报, 2021, 42(12): 7-17. DOI: 10.12073/j.hjxb.20210421005
引用本文: 仲杨, 郑志镇, 李建军, 张华. 氮气辅助316L不锈钢激光-MIG复合焊接组织与耐蚀性能[J]. 焊接学报, 2021, 42(12): 7-17. DOI: 10.12073/j.hjxb.20210421005
ZHONG Yang, ZHENG Zhizhen, Li Jianjun, ZHANG Hua. Microstructure and corrosion resistance of laser-MIG 316L stainless steel under the nitrogen assistance[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 7-17. DOI: 10.12073/j.hjxb.20210421005
Citation: ZHONG Yang, ZHENG Zhizhen, Li Jianjun, ZHANG Hua. Microstructure and corrosion resistance of laser-MIG 316L stainless steel under the nitrogen assistance[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 7-17. DOI: 10.12073/j.hjxb.20210421005

氮气辅助316L不锈钢激光-MIG复合焊接组织与耐蚀性能

基金项目: 国家重点研发计划(2018YFB1106501,2018YFB1106505)
详细信息
    作者简介:

    仲杨,博士;主要从事激光-电弧复合焊接方面的科研工作;Email: d201980305@hust.edu.cn

    通讯作者:

    郑志镇,教授;Email:zzz@mail.hust.edu.cn.

  • 中图分类号: TG 456.7

Microstructure and corrosion resistance of laser-MIG 316L stainless steel under the nitrogen assistance

  • 摘要: 为了提高纯氩气下MIG焊接316L不锈钢的稳定性、改善焊缝组织以及强化耐腐蚀性能,引入1 200 W小功率激光对MIG电弧进行诱导压缩,同时在氩气中混入氮气,探索不同流量比的Ar-N2混合气体对焊缝微观组织及其耐腐蚀性能的影响. 结果表明,激光的诱导作用能够收缩并稳定MIG电弧,随着氮气流量的增加,焊缝的熔合线逐渐平缓,内部气孔缺陷明显降低;XRD测试和显微组织分析发现,渗氮后的焊缝内部γ相含量明显增多,中下部区域均为细小均匀的γ胞状晶,中上部区域为γ树枝晶,并且一次枝晶间距逐渐减小. 当氮气流量增加到5 L/min,焊缝的显微硬度可综合提升20 HV;电化学极化测试发现,渗氮之后的焊缝表现出更强的耐腐蚀性能. 试验证实,氮气辅助激光-MIG复合焊接工艺能够改善316L不锈钢焊缝的显微组织和耐腐蚀性能,当Ar∶N2气体流量比为20∶5时,γ相的强化效果最显著,综合耐腐蚀性能最好.
    Abstract: In order to enhance the MIG arc stability, improve the internal microstructure and strengthen the corrosion resistance of 316L stainless steel weldments manufactured by MIG under the pure argon gas, a 1 200 W low power laser was introduced to induce compression on the MIG arc, with N2 mixed into Ar to explore the effect of Ar-N2 mixed shielding gas with different flow rates on the microstructure and corrosion resistance of the 316L welding seam. Experimental observations display that the MIG arc became more stable under the induced effect of 1 200 W laser. With the increase of N2 gas flow rate, the fusion line of the molted pool become smoother and the internal porosity defects are significantly reduced. XRD tests and microstructure observations indicate that the content of internal γ-phase increase significantly. It can be clearly seen that most fine cellular γ phase distributed uniformly in the lower middle regions of the molted pool, and the upper middle regions were dendritic γ phase, with its primary dendrite spacing gradually decreased. As the N2 gas flow rate increase to 5 L/min, the micro-hardness of the welding seam could be enhanced by 20 HV. Electrochemical polarization tests revealed that the Laser-MIG 316L welding seam formed under the Ar-N2 mixed gas exhibit stronger corrosion resistance. Above experiments confirmed that the N2-assisted laser-MIG hybrid welding technology can improve the microstructure and corrosion resistance of 316L stainless steel weldments, and when the Ar : N2 gas flow rate is 20 : 5, the strengthening effect of γ phase is most significant and the best corrosion resistance can be achieved comprehensively.
  • 海底管道和立管是深海油气开发装备中的关键构件. 管体长期处于恶劣的海洋环境中,在内部压力、波浪、海流和浮体运动等因素引起的交变载荷作用下,管体环焊缝附近容易出现疲劳裂纹. 圆管环向外表面裂纹是海底管道和立管最常见的裂纹形式之一,表面裂纹逐步扩展,可能会导致管体断裂,甚至会造成灾难性事故[1]. 因此,圆管环向外表面裂纹SIFs是含裂纹圆管构件疲劳寿命预测与断裂评估的重要指标,裂纹尖端SIFs的准确计算,对海底管道和立管的服役安全性保障具有重要的工程应用价值.

    对于含表面裂纹的圆管构件,采用有限元方法能够求解不同形状裂纹的SIFs[2-3]. LI等人[2]通过三维有限元方法分析了远端拉伸和弯矩载荷作用下圆管环向外表面裂纹的SIFs,并以此提出了经验公式. WANG等人[3]采用J积分法计算了6种不同载荷条件下圆管环向外表面裂纹和内表面裂纹的SIFs. 有限元方法通常对每一个裂纹尺寸和载荷条件都需要单独创建模型,建模过程复杂,计算成本高. 此外,海底管道和立管环焊缝由于受应力集中和焊接残余应力的影响,焊趾附近存在复杂的高阶应力分布,导致现有的SIFs经验公式往往存在不适用的问题[4].

    权函数法是求解受载裂纹体SIFs的一种高效、可靠的手段[5]. 权函数只与裂纹体的几何参数有关,而与裂纹体所受载荷无关. 裂纹体的权函数确定后,可用来求解任意载荷作用下的SIFs,所需计算仅是权函数和裂纹面应力分布乘积的积分. 针对圆管表面裂纹学者提出了不同形式的权函数. 况正等人[6]提出了用于计算圆管轴向外表面裂纹最深点和表面点SIFs的一维权函数. 龚宝明等人[7]采用有限元方法计算了圆管环向外表面裂纹最深点在不同应力分布载荷下的SIFs,并且推导了表面裂纹最深点的一维权函数. 然而,上述研究未曾涉及圆管环向外表面裂纹表面点的SIFs计算和权函数的推导,限制了权函数法在管道环向外表面裂纹扩展预报中的应用. 此外,一维权函数仅适用于应力分布沿着圆管壁厚单向变化的情况,对于管道环焊缝附近存在明显的双向变化应力场则不再适用. 针对双向应力场中的平面裂纹问题,WANG等人[8]提出了一种通用二维权函数,并将其应用到无限体和半无限体中椭圆形埋藏裂纹SIFs的求解过程中. 在此基础上,YUAN等人[9]和GU等人[10]先后提出了适用于不同形状范围的有限平板半椭圆表面裂纹二维权函数.然而,目前公开的关于圆管环向外表面裂纹的二维权函数的研究结果较少.

    文中采用有限元方法计算不同圆管厚径比、裂纹形状比和裂纹深度比的圆管环向外表面裂纹的SIFs,作为参考解,推导表面裂纹最深点和表面点的二维权函数. 通过在裂纹面分别施加高阶应力分布载荷和环焊缝残余应力进行计算,与有限元结果进行对比,验证文中提出的二维权函数的有效性.

    任意形状的平面裂纹,如图1所示. 裂纹前缘任意一点P'(x', y')的SIFs K,可通过对该裂纹体的二维权函数m (x, y; P')和无裂纹体,在假想裂纹面位置的应力分布σ (x, y)的乘积沿裂纹面面积S的积分得到,即

    图  1  一般平面裂纹示意图
    Figure  1.  Illustration for a general planar crack
    $$ \begin{gathered} K\left( {{\text{P}}{\text{'}}} \right) = \iint {\sigma \left( {x,y} \right)} \cdot m\left( {x,y;{\text{P}{{\text{'}}}}} \right)dS \end{gathered} $$ (1)

    式中:σ (x, y)为无裂纹体在假想裂纹面位置的应力;m (x, y; P')为P (x, y)点处的单位点载荷在P'点处诱导的SIFs.

    平面裂纹二维权函数与加载点P (x, y)到裂纹前缘的最短距离s以及P点到P'点的距离ρ有关,即

    $$ \begin{gathered} m\left( {x,y;{\text{P}{\text{'}}}} \right) = \frac{{\sqrt {2s} }}{{{\text{π} ^{3/2}}{\rho ^2}}}w\left( {x,y;{\text{P}{\text{'}}}} \right) \end{gathered} $$ (2)

    式中:w (x, y; P')为反映裂纹体几何形状和边界条件的影响的几何函数.

    不同表面裂纹权函数参数示意图,如图2所示.针对图2(a)中的无限体中椭圆形埋藏裂纹,WANG等人[8]提出了通用二维权函数,即

    图  2  不同表面裂纹权函数参数示意图
    Figure  2.  Illustration of different surface cracks and parameters of weight functions. (a) embedded elliptical crack; (b) inner axial surface crack in a cylinder
    $$ \begin{gathered} m\left( {x,y;{\text{P}{\text{'}}}} \right) = \frac{{\sqrt {2s} }}{{{\text{π} ^{3/2}}{\rho ^2}}}\left[ {1 + M\left( {\theta ,\frac{a}{c}} \right)\left( {1 - \frac{{r(\varphi )}}{{R(\varphi )}}} \right)} \right] \end{gathered} $$ (3)

    式中:θ为P'点在裂纹前缘位置的极坐标角度;a椭圆形裂纹沿局部坐标y的半轴长;c为椭圆形裂纹沿局部坐标x方向的半轴长;φ为加载点P的极坐标角度;r为加载点P的极坐标半径;R为O点与Q点之间距离;M为权函数系数.

    对于图2(b)中圆管厚径比T/Ri = 0.25的圆管轴向内表面裂纹,GOOGARCHIN等人[11]提出考虑了裂纹深度比a/T的影响的二维权函数,即

    $$ \begin{gathered} m\left( {x,y;{\text{P}}'} \right) = \frac{{\sqrt {2s} }}{{{\text{π} ^{3/2}}{\rho ^2}}}\left[ {1 + M\left( {\theta ,\frac{a}{c},\frac{a}{T}} \right)\left( {1 - \frac{{r\left( \varphi \right)}}{{R\left( \varphi \right)}}} \right)} \right] \end{gathered} $$ (4)

    式中:T为圆管壁厚;Ri为内壁半径.

    对比式(3)和式(4)可知,不同形状裂纹体二维权函数的推导,本质上是权函数系数M的求解,而权函数系数M是裂纹前缘上P'点位置与裂纹体形状参数的函数. 圆管环向外表面裂纹权函数参数,如图3所示. 对于圆管环向外表面裂纹,考虑圆管厚径比T/Ri影响,文中提出的二维权函数为

    图  3  圆管环向外表面裂纹权函数参数
    Figure  3.  Illustration of weight function parameters for an external circumferential surface crack in a cylinder. (a) cross-section view; (b) external circumferential surface cracked cylinder
    $$ \begin{gathered} m(x,y;{\text{P}}') = \frac{{\sqrt {2s} }}{{{\text{π} ^{3/2}}{\rho ^2}}}\left[ {1 + M\left( {\frac{\xi }{h},\frac{a}{c},\frac{a}{T},\frac{T}{{{R_{\text{i}}}}}} \right)\left( {1 - \frac{{r(\varphi )}}{{R(\varphi )}}} \right)} \right] \end{gathered} $$ (5)

    式中:$\xi/h $为P'点在裂纹前缘的归一化坐标;a/c为裂纹形状比;a/T为裂纹深度比;T/Ri为圆管厚径比.

    P'点的归一化坐标ξ/h在0.0(最深点A)到1.0(表面点B)之间变化. 求解未知权函数系数M时,需要已知的载荷下的SIFs作为参考解,可通过自行创建含裂纹圆管有限元模型计算得到.

    采用有限元软件ANSYS创建了圆管环向外表面裂纹有限元模型,如图4所示. 裂纹形状比a/c = 0.2,0.4,0.6,0.8和1.0、裂纹深度比a/T = 0.1,0.2,0.4,0.6和0.8和圆管厚径比T/Ri = 0.02,0.05,0.1和0.2. 含环向外表面裂纹的圆管三维有限元模型共100个. 采用对称边界条件创建了1/4裂纹体模型,裂纹面上的应力分布载荷通过面压力的形式进行加载. 材料模型设定为线弹性体,杨氏模量为206 GPa,泊松比为0.3. 有限元模型采用SOLID186高阶体单元进行网格划分,裂纹前缘采用1/4节点奇异单元进行细化处理. 采用位移外插法计算各模型裂纹最深点A ($\xi/h $ = 0.0)和表面点B ($\xi/h $ = 1.0)处的SIFs. 通过裂纹前缘最小网格尺寸的收敛性验证,确定了当最小网格尺寸为1/50a时,SIFs计算结果可达到收敛.

    图  4  圆管环向外表面裂纹有限元模型
    Figure  4.  Finite element model for an external circumferential surface crack in a cylinder. (a) 1/4 symmetric model; (b) local enlargement of Fig.4(a)

    为了验证有限元模型计算结果的准确性,采用SHOHEIB等人[12]的SIFs结果作为参照,在裂纹面施加均布应力载荷,求得的SIFs K作无量纲化处理,边界修正因子为

    $$ F = \frac{K}{{{\sigma _0}\sqrt {\dfrac{{\text{π} a}}{Q}} }} $$ (6)

    式中:σ0为名义应力;Q为第二类椭圆积分近似解.

    圆管厚径比为0.1的边界修正因子有限元结果,如表1所示. 圆管厚径比为0.2的边界修正因子有限元结果,如表2所示. 所有最深点A和表面点B处的计算结果,相对误差均在7%以内,表明圆管环向外表面裂纹的有限元建模方法是可行的. 与参考文献[12]相比,文中扩大了裂纹形状比a/c、裂纹深度比a/T和圆管厚径比T/Ri的形状适用范围,认为所创建的表面裂纹模型具有与已验证结果同等的计算精度,为文中二维权函数的求解和验证提供参考解.

    表  1  厚径比为0.1的边界修正因子有限元结果
    Table  1.  Boundary correction factors calculated by finite element models for T/Ri= 0.1
    裂纹形状比
    a/c
    裂纹深度比
    a/T
    最深点A (ξ/h = 0.0) 表面点B (ξ/h = 1.0)
    边界修正因子
    有限元结果
    FFEM
    边界修正因子
    参考解
    Fref
    误差
    δ(%)
    边界修正因子
    有限元结果
    FFEM
    边界修正因子
    参考解
    Fref
    误差
    δ(%)
    0.5 0.2 1.092 1.094 −0.18 0.866 0.876 −1.14
    0.5 0.4 1.166 1.173 −0.60 0.947 0.965 −1.87
    0.5 0.6 1.258 1.273 −1.18 1.081 1.120 −3.48
    0.5 0.8 1.315 1.342 −2.01 1.248 1.309 −4.66
    1.0 0.2 1.044 1.039 0.48 1.104 1.174 −5.96
    1.0 0.4 1.069 1.061 0.75 1.158 1.229 −5.78
    1.0 0.6 1.095 1.083 1.11 1.233 1.320 −6.59
    1.0 0.8 1.112 1.091 1.92 1.323 1.432 −4.12
    参考文献[12] 参考文献[12]
    下载: 导出CSV 
    | 显示表格
    表  2  厚径比为0.2的边界修正因子有限元结果
    Table  2.  Boundary correction factors calculated by finite element models for T/Ri=0.2
    裂纹形状比
    a/c
    裂纹深度比
    a/T
    最深点A (ξ/h = 0.0) 表面点B (ξ/h = 1.0)
    边界修正因子
    有限元结果
    FFEM
    边界修正因子
    参考解
    Fref
    误差
    δ(%)
    边界修正因子
    有限元结果
    FFEM
    边界修正因子
    参考解
    Fref
    误差
    δ(%)
    0.5 0.2 1.091 1.096 − 0.46 0.866 0.877 − 1.25
    0.5 0.4 1.162 1.177 − 1.27 0.941 0.962 − 2.18
    0.5 0.6 1.253 1.284 − 2.41 1.065 1.108 − 3.88
    0.5 0.8 1.324 1.372 − 3.50 1.226 1.282 − 4.37
    1.0 0.2 1.044 1.038 0.58 1.128 1.174 − 3.92
    1.0 0.4 1.070 1.056 1.33 1.163 1.226 − 5.14
    1.0 0.6 1.099 1.077 2.04 1.241 1.314 − 5.56
    1.0 0.8 1.120 1.083 3.42 1.342 1.421 − 5.56
    参考文献[12] 参考文献[12]
    下载: 导出CSV 
    | 显示表格

    以均布应力$ \sigma (x,y{\text{)}} = {\sigma _0} $条件下最深点A和表面点B的SIFs有限元结果作为参考解Kref,将所提出的二维权函数表达式(5)带入式(1)可得

    $$ \left\{\begin{array}{l} M\left(\dfrac{\xi}{h}, \dfrac{a}{c}, \dfrac{a}{T}, \dfrac{T}{R_{\mathrm{i}}}\right)=\dfrac{K_{\mathrm{ref}}\left(\mathrm{P}{\text{'}}\right)-I_1}{I_2} \\ I_1=\displaystyle\iint \sigma_0 \dfrac{\sqrt{2 s}}{\pi^{3 / 2} \rho^2} \mathrm{~d} S\\ I_2=\displaystyle\iint \sigma_0 \dfrac{\sqrt{2 s}}{\pi^{3 / 2} \rho^2}\left(1-\dfrac{r(\varphi)}{R(\varphi)}\right) \mathrm{d} S \end{array}\right. $$ (7)

    为了求解不同裂纹形状对应的权函数系数M,采用Matlab软件编写了裂纹面区域网格划分与数值积分程序. 数值积分网格,如图5所示. 对裂纹面区域采用四边形网格进行分割,采用Gauss-Legendre方法对式(7)中的I1I2进行数值积分. 对裂纹形状比a/c为0.2~1.0,裂纹深度比a/T 为0.1~0.8,圆管厚径比T/Ri为0.02~0.20的环向外表面裂纹最深点A(ξ/h=0.0)和表面点B(ξ/h=1.0)对应的权函数系数M进行了求解.

    图  5  数值积分网格
    Figure  5.  Mesh used for numerical integration

    系数M的计算数据进行了多项式拟合,拟合优度R2均大于0.99 ,得到参数化公式为

    $$ \left\{\begin{array}{l} M\left(\dfrac{\xi}{h}=0.0, \dfrac{a}{c}, \dfrac{a}{T}, \dfrac{T}{R_{\mathrm{i}}}\right)=A_1\left(\dfrac{a}{T}\right)^4+A_2\left(\dfrac{a}{T}\right)^3+A_3\left(\dfrac{a}{T}\right)^2+A_4\left(\dfrac{a}{T}\right)+A_5 \\ A_i=B_{i 1}\left(\dfrac{a}{c}\right)^4+B_{i 2}\left(\dfrac{a}{c}\right)^3+B_{i 3}\left(\dfrac{a}{c}\right)^2+B_{i 4}\left(\dfrac{a}{c}\right)+B_{i 5}, \quad i=1,2,3,4,5 \\ B_{i j}=C_{i j 1}\left(\dfrac{T}{R_i}\right)^3+C_{i j 2}\left(\dfrac{T}{R_i}\right)^2+C_{i j 3}\left(\dfrac{T}{R_i}\right)+C_{i j 4}, \quad i=1,2,3,4,5\; j=1,2,3,4,5 \end{array}\right. $$ (8)
    $$ \left\{\begin{array}{l} M\left(\dfrac{\xi}{h}=1.0, \dfrac{a}{c}, \dfrac{a}{T}, \dfrac{T}{R_i}\right)=D_1\left(\dfrac{a}{T}\right)^4+D_2\left(\dfrac{a}{T}\right)^3+D_3\left(\dfrac{a}{T}\right)^2+D_4\left(\dfrac{a}{T}\right)+D_5 \\ D_i =E_{i 1}\left(\dfrac{a}{c}\right)^4+E_{i 2}\left(\dfrac{a}{c}\right)^3+E_{i 3}\left(\dfrac{a}{c}\right)^2+E_{i 4}\left(\dfrac{a}{c}\right)+E_{i 5}, \quad i=1,2,3,4,5 \\ E_{i j} =F_{i j 1}\left(\dfrac{T}{R_i}\right)^3+F_{i j 2}\left(\dfrac{T}{R_i}\right)^2+F_{i j 3}\left(\dfrac{T}{R_i}\right)+F_{i j 4}, \quad i=1,2,3,4,5\; j=1,2,3,4,5 \end{array}\right. $$ (9)

    式(8)中,矩阵分别为

    $$ \begin{gathered}{\boldsymbol{C}}_{1ij}=\left[\begin{array}{*{20}{c}}-288\; 742.77 & \ \ 101\; 756.36 & \ \ 11\; 582.97 & \ \ \ 267.31 \\ \ \ \ \ 899\; 820.53 & -321\; 381.05 & \ \ 35\; 772.05 & -864.77 \\ -\ 935\; 355.06 & \ \ 338\; 958.23 & -37\; 374.60 & \ \ 932.75 \\ \ \ \ 377\; 773.99 & -138\; 725.44 & \ \ 15\; 225.90 & -378.49 \\ \ -38\; 476.36 & \ \ \ \ 14\; 688.55 & -1\; 663.16 & \ \ \ \ 34.33\end{array}\right],\ j=1,2,3,4,5;\ k=1,2,3,4\end{gathered} $$ (10)
    $$ \begin{gathered}{\boldsymbol{C}}_{2ij}=\left[\begin{array}{*{20}{c}}\ \ \ \ \ 972\; 212.89 & -333\; 959.93 & \ \ \ 34\; 003.81 & \ -769.37 \\ -2740\; 928.76 & \ \ 952\; 110.08 & -96\; 879.15 & \ \ 2\; 223.86 \\ \ \ \ 2658\; 015.42 & -934\; 563.44 & \ \ \ 95\; 420.40 & -2\; 224.86 \\ -1022\; 981.35 & \ \ 363\; 795.56 & -37\; 351.57 & \ \ \ \ \ 881.58 \\ \ \ \ \ 106\; 724.12 & \ -38\; 995.71 & \ \ \ \ 4\; 143.45 & \ \ \ -97.45\end{array}\right],j=1,2,3,4,5;\ k=1,2,3,4\end{gathered} $$ (11)
    $$ \begin{gathered}{\boldsymbol{C}}_{3ij}=\left[\begin{array}{*{20}{c}}-959\; 624.37 & \ \ 324\; 685.80 & -31\; 227.59 & \ \ \ \ \ 721.19 \\ \ \ 2545\; 366.75 & -870\; 996.13 & \ \ 84\; 431.54 & -1\; 949.23 \\ -2348\; 529.09 & \ \ \ 813\; 554.02 & -79\; 647.06 & \ \ 1\; 853.79 \\ \ \ \ \ 871\; 767.02 & -305\; 483.89 & \ \ \ 30\; 233.64 & \ -724.78 \\ \ \ -92\; 106.83 & \ \ \ \ \ 33\; 006.11 & \ -3\; 379.32 & \ \ \ \ \ \ \ 91.28\end{array}\right],j=1,2,3,4,5;\ k=1,2,3,4\end{gathered} $$ (12)
    $$ \begin{gathered}{\boldsymbol{C}}_{4ij}=\left[\begin{array}{*{20}{c}}\ \ 328\; 754.28 & -108\; 161.76 & \ \ \ \ \ 9\; 780.25 & -215.56 \\ -835\; 500.81 & \ \ 278\; 720.65 & -25\; 579.18 & \ \ \ 555.59 \\ \ \ 742\; 858.22 & -251\; 560.89 & \ \ \ 23\; 451.68 & -502.77 \\ -268\; 838.79 & \ \ \ \ 92\; 277.29 & \ -8\; 720.95 & \ \ 185.93 \\ \ \ \ \ 28\; 353.41 & \ \ -9\; 917.41 & \ \ \ \ \ \ \ \ 961.38 & \ -20.73\end{array}\right],j=1,2,3,4,5;\ k=1,2,3,4\end{gathered} $$ (13)
    $$ \begin{gathered}{\boldsymbol{C}}_{5ij}=\left[\begin{array}{*{20}{c}}-28\; 556.77 & \ \ \ \ 8\; 976.93 & \ -737.25 & \ \ \ 14.27 \\ \ \ \ \ 70\; 773.11 & -22\; 724.91 & \ \ 1\; 923.77 & -36.08 \\ \ -62\; 072.20 & \ \ 20\; 405.89 & -1\; 782.95 & \ \ 32.33 \\ \ \ \ \ \ \ 2\; 665.38 & -7\; 608.15 & \ \ \ \ \ 682.19 & -12.51 \\ \ \ -2\; 414.46 & \ \ \ \ \ \ 826.12 & \ \ \ -75.70 & \ \ \ \ 2.39\end{array}\right],j=1,2,3,4,5;\ k=1,2,3,4 \\ \end{gathered} $$ (14)

    式(9)中,矩阵分别为

    $$ \begin{gathered}{\boldsymbol{F}}_{1ij}=\left[\begin{array}{*{20}{c}}-2\; 128\; 682.35 & \ \ 1\; 117\; 130.84 & \ -80\; 994.46 & \ \ \ \ -17.23 \\ \ \ \ 4\; 598\; 379.63 & -2\; 622\; 857.97 & \ \ \; 193\; 752.31 & \ \ 1\; 372.65 \\ -\ 3\; 629\; 035.77 & \ \ 2\; 171\; 834.39 & -\; 161\; 867.05 & -2\; 940.13 \\ \ \ 1\; 143\; 285.52 & \ -713\; 942.49 & \ \ \ \ \ 54\; 709.45 & \ \ 1\; 941.19 \\ \ -\; 136\; 731.15 & \ \ \ \ \ \ \ 85\; 677.53 & \ \ \ \ -7\; 419.81 & \ \ -374.05\end{array}\right],j=1,2,3,4,5;\ k=1,2,3,4\end{gathered} $$ (15)
    $$ \begin{gathered}{\boldsymbol{F}}_{2ij}=\left[\begin{array}{*{20}{c}}-1\; 629\; 116.95 & -\; 158\; 816.59 & \ \ \ \ \ \ \ 568.18 & \ \ 1\; 532.68 \\ \ \ \ 6\; 221\; 627.44 & -\; 163\; 358.30 & \ \ 31\; 641.94 & -6\; 357.93 \\ -7\; 186\; 327.90 & \; \ \ \ 683\; 045.20 & -65\; 342.15 & \ \ 8\; 798.28 \\ \ \ \ 3\; 312\; 610.25 & -\; 507\; 621.52 & \ \ 41\; 907.33 & -4\; 775.61 \\ \ -\; 462\; 870.65 & \ \ \ \ \ 83\; 551.06 & \ -5\; 729.47 & \ \ \ \ \ 829.91\end{array}\right],j=1,2,3,4,5;\ k=1,2,3,4\end{gathered} $$ (16)
    $$ \begin{gathered}{\boldsymbol{F}}_{3ij}=\left[\begin{array}{*{20}{c}}\ \ \ \ 4\; 501\; 085.07 & -1\; 077\; 586.81 & \ \ \ \ \ \ 83\; 984.70 & -1\; 210.10 \\ -12\; 880\; 420.52 & \ \ 3\; 117\; 349.44 & -\; 233\; 003.82 & \ \ 4\; 421.09 \\ \ \ 12\; 829\; 414.54 & -3\; 195\; 667.57 & \; \ \ \ 234\; 514.40 & -5\; 612.10 \\ -\ 5\; 300\; 824.65 & \ \ 1\; 381\; 840.19 & -\; 100\; 742.98 & \ \ 2\; 854.32 \\ \ \ \ \ \ \ \; 716\; 125.69 & \ -\; 193\; 140.88 & \ \ \ \ \ 13\; 705.04 & \ -466.85\end{array}\right],j=1,2,3,4,5;\ k=1,2,3,4\end{gathered} $$ (17)
    $$ \begin{gathered}{\boldsymbol{F}}_{4ij}=\left[\begin{array}{*{20}{c}}-1\; 397\; 123.30 & \; \ \ \ \ 357\; 533.23 & -21\; 736.61 & \ -30.23 \\ \ \ \ 3\; 834\; 061.70 & -\; 976\; 627.77 & \ \ 58\; 103.87 & -248.32 \\ -3\; 741\; 415.32 & \ \ \ \; 967\; 250.91 & -58\; 020.14 & \ \ 629.08 \\ \ \ \ 1\; 535\; 576.35 & -\; 411\; 022.16 & \ \ 25\; 511.48 & -435.27 \\ \ -\; 209\; 089.87 & \ \ \ \ \ \ 57\; 913.89 & \ -3\; 676.21 & \ \ \ \ 90.34\end{array}\right],j=1,2,3,4,5;\ k=1,2,3,4\end{gathered} $$ (18)
    $$ \begin{gathered}{\boldsymbol{F}}_{5ij}=\left[\begin{array}{*{20}{c}}\ \ \ \ \ 68\; 816.32 & -16\; 650.33 & \ \ \ \ \ 694.10 & \ \ 32.88 \\ -\; 191\; 991.96 & \ \ 45\; 790.06 & -1\; 839.22 & -73.09 \\ \; \ \ \ 191\; 700.61 & -46\; 488.81 & \ \ 1\; 945.50 & \ \ 55.81 \\ \ -79\; 715.02 & \ \ 20\; 214.64 & \ -924.00 & -20.31 \\ \ \ \ \ \ 10\; 334.03 & \ -2\; 731.24 & \ \ \ \ \ 127.87 & \ \ \ \ 5.59\end{array}\right],j=1,2,3,4,5;\ k=1,2,3,4 \\ \end{gathered} $$ (19)

    图6 ~ 图9分别为圆管厚径比T/Ri = 0.02和T/Ri = 0.2的环向外表面裂纹最深点A(ξ/h = 0.0)和表面点B(ξ/h = 1.0)的权函数结果与有限元结果对比. 在裂纹面施加的沿壁厚方向变化的1次、2次和3次应力分布载荷为

    图  6  厚径比为0.02的最深点权函数结果与有限元结果对比
    Figure  6.  Comparison between the results of deepest point calculated by weight function and finite element for T/Ri = 0.02. (a) a/T = 0.1; (b) a/T = 0.2; (c) a/T = 0.4; (d) a/T = 0.6; (e) a/T = 0.8
    图  9  厚径比为0.2的表面点权函数结果与有限元结果对比
    Figure  9.  Comparison between the results of surface point calculated by weight function and finite element for T/Ri = 0.2. (a) a/T = 0.1; (b) a/T = 0.2; (c) a/T = 0.4; (d) a/T = 0.6; (e) a/T = 0.8
    $$ \sigma (x,y) = {\sigma }_{0}{\left(1-\frac{y}{a}\right)}^{n}\text{,}n = 1,2,3 $$ (20)

    将计算的SIFs经无量纲化处理后得到边界修正因子F. 与有限元结果相比,权函数结果在最深点和表面点的最大相对误差分别为9.5%和7.8%.

    图  7  厚径比为0.02的表面点权函数结果与有限元结果对比
    Figure  7.  Comparison between the results of surface point calculated by weight function and finite element for T/Ri = 0.02. (a) a/T = 0.1; (b) a/T = 0.2; (c) a/T = 0.4; (d) a/T = 0.6; (e) a/T = 0.8
    图  8  厚径比为0.2的 最深点权函数结果与有限元结果对比
    Figure  8.  Comparison between the results of deepest point calculated by weight function and finite element for T/Ri = 0.2. (a) a/T = 0.1; (b) a/T = 0.2; (c) a/T = 0.4; (d) a/T = 0.6; (e) a/T = 0.8

    海底油气管道和钢悬链立管是典型的焊接构件,在制造过程中沿着环焊缝往往产生较高的焊接残余应力,加快了表面裂纹的萌生和扩展.表3 ~ 表6分别为裂纹形状比a/c = 0.25,0.5和1.0,裂纹深度比a/T = 0.2,0.4,0.6和0.8,圆管厚径比T/Ri = 0.05,0.1,共24种不同形状表面裂纹最深点和表面点处权函数与有限元计算结果的对比. 为了进一步验证所提出权函数的适用性,结合文献[13]根据英国标准协会制订的BS7910《配管减薄基准》中推荐的环焊缝残余应力分布施加到裂纹面上.

    表  3  厚径比为0.05的残余应力分布下最深点权函数结果与有限元结果对比
    Table  3.  Comparison of the results of deepest point calculated by weight function and finite element for residual stress distribution for T/Ri=0.05
    裂纹形状比
    a/c
    裂纹深度比
    a/T
    边界修正因子有限元结果
    FFEM
    边界修正因子权函数结果
    FWF
    误差
    δ(%)
    0.25 0.2 1.1403 1.1371 − 0.28
    0.25 0.4 1.2807 1.2814 0.05
    0.25 0.6 1.3512 1.3474 − 0.28
    0.25 0.8 1.2694 1.2555 − 1.10
    0.50 0.2 1.0913 1.0898 − 0.14
    0.50 0.4 1.1416 1.1430 0.12
    0.50 0.6 1.0897 1.0887 − 0.09
    0.50 0.8 0.9421 0.9267 − 1.63
    1.00 0.2 1.0425 1.0423 − 0.02
    1.00 0.4 1.0369 1.0391 0.21
    1.00 0.6 0.8994 0.9049 0.61
    1.00 0.8 0.7124 0.7230 1.49
    下载: 导出CSV 
    | 显示表格
    表  6  厚径比为0.1的残余应力分布下表面点权函数结果与有限元结果对比
    Table  6.  Comparison of the results of surface point calculated by weight function and finite element for residual stress distribution for T/Ri=0.1
    裂纹形状比
    a/c
    裂纹深度比
    a/T
    边界修正因子有限元结
    FFEM
    边界修正因子权函数结
    FWF
    误差
    δ(%)
    0.25 0.2 0.6795 0.6766 − 0.43
    0.25 0.4 0.7177 0.6948 − 3.19
    0.25 0.6 0.7768 0.8029 3.36
    0.25 0.8 0.8096 0.8165 0.85
    0.50 0.2 0.8557 0.8639 0.96
    0.50 0.4 0.9413 0.9543 1.38
    0.50 0.6 1.0698 1.0645 − 0.50
    0.50 0.8 1.2003 1.1754 − 2.07
    1.00 0.2 1.0932 1.0929 − 0.03
    1.00 0.4 1.1512 1.1513 0.01
    1.00 0.6 1.2217 1.2236 0.16
    1.00 0.8 1.2782 1.2872 0.70
    下载: 导出CSV 
    | 显示表格

    环焊缝残余应力分布为

    $$ \begin{split} \sigma (x,y) =\frac{{{\sigma _{{\text{res}}}}(y)}}{{\sigma_{\text{Y}}}} = 1 - 6.80\left( {\frac{{T - y}}{T}} \right) + 24.30{\left( {\frac{{T - y}}{T}} \right)^2} - 28.68{\left( {\frac{{T - y}}{T}} \right)^3} + 11.18{\left( {\frac{{T - y}}{T}} \right)^4} \end{split} $$ (21)

    式中:σres为沿着壁厚方向变化的残余应力;σY为圆管材料的屈服应力.

    表3 ~ 表6形状表面裂纹最深点和表面点处权函数与有限元计算结果,所有误差在5%以内,表明了权函数具有良好的计算精度.

    表  4  厚径比为0.1的残余应力分布下最深点权函数结果与有限元结果对比
    Table  4.  Comparison of the results of deepest point calculated by weight function and finite element for residual stress distribution for T/Ri=0.1
    裂纹形状比
    a/c
    裂纹深度比
    a/T
    边界修正因子有限元结果
    FFEM
    边界修正因子权函数结果
    FWF
    误差
    δ(%)
    0.25 0.2 1.1358 1.1348 − 0.09
    0.25 0.4 1.2654 1.2656 0.02
    0.25 0.6 1.3230 1.3289 0.45
    0.25 0.8 1.2547 1.2678 1.04
    0.50 0.2 1.0901 1.0896 − 0.05
    0.50 0.4 1.1395 1.1400 0.04
    0.50 0.6 1.0878 1.0887 0.08
    0.50 0.8 0.9488 0.9468 − 0.21
    1.00 0.2 1.0431 1.0427 − 0.04
    1.00 0.4 1.0379 1.0401 0.21
    1.00 0.6 0.9022 0.9076 0.60
    1.00 0.8 0.7184 0.7279 1.33
    下载: 导出CSV 
    | 显示表格
    表  5  厚径比为0.05的残余应力分布下表面点权函数结果与有限元结果对比
    Table  5.  Comparison of the results of surface point calculated by weight function and finite element for residual stress distribution for T/Ri=0.05
    裂纹形状比
    a/c
    裂纹深度比
    a/T
    边界修正因子有限元结
    FFEM
    边界修正因子权函数结果
    FWF
    误差
    δ(%)
    0.25 0.2 0.7025 0.6679 − 4.93
    0.25 0.4 0.7782 0.7466 − 4.06
    0.25 0.6 0.9051 0.9108 0.63
    0.25 0.8 1.0188 0.9971 − 2.13
    0.50 0.2 0.8568 0.8532 − 0.42
    0.50 0.4 0.9424 0.9221 − 2.15
    0.50 0.6 1.0727 1.0331 – 3.69
    0.50 0.8 1.2068 1.2082 0.12
    1.00 0.2 1.0948 1.0946 − 0.02
    1.00 0.4 1.1419 1.1406 − 0.11
    1.00 0.6 1.2093 1.2114 0.17
    1.00 0.8 1.2663 1.2809 1.15
    下载: 导出CSV 
    | 显示表格

    (1) 文中建立的二维权函数具有更广泛的裂纹形状适用范围,裂纹形状比a/c为0.2 ~ 1.0,裂纹深度比a/T 为0.1 ~ 0.8,圆管厚径比T/Ri为0.02 ~ 0.2.

    (2) 通过分别施加高阶应力分布载荷和环焊缝残余应力进行验证,结果表明权函数结果与有限元结果的最大相对误差为9.5%,满足实际工程应用需要.

    (3) 提出的圆管环向外表面裂纹二维权函数可以应用于含表面裂纹缺陷的海底管道与立管的SIFs计算和疲劳裂纹扩展寿命预报.

  • 图  1   激光-MIG复合焊接工艺示意图

    Figure  1.   Schematic diagram of laser-MIG hybrid welding technology

    图  2   用于电化学测试的纵向焊道工作电极选区示意图

    Figure  2.   Schematic diagram of welded zone selected as working electrode for electrochemical tests. (a) cross welding; (b) longitudinal welding

    图  3   不同Ar-N2气体流量比的激光-MIG复合焊接316L不锈钢焊道的表面形貌

    Figure  3.   Macroscopic of 316L stainless steel welding bead formed by laser-MIG hybrid welding technology under the different flow rate ratios of Ar-N2 shielding gas

    图  4   不同Ar-N2气体流量比的激光-MIG复合焊接316L不锈钢横向焊缝组织形貌

    Figure  4.   Microstructure of 316L transverse welding seam formed by laser-MIG hybrid welding technology under the different flow rate ratios of Ar-N2 shielding gas. (a) cross section; (b) upper middle region; (c) middle region; (d) lower middle region

    图  5   MAG焊(80%Ar-20%CO2)316L不锈钢横向焊缝组织形貌

    Figure  5.   Microstructure of 316L transverse welding seam formed by MAG welding under the 80%Ar-20%CO2 shielding gas. (a) lower middle region;(b) middle region;(c) bottom region;(d) fusion line

    图  6   不同Ar- N2气流量比下的激光-MIG复合焊接316L不锈钢纵向焊缝组织图

    Figure  6.   Microstructure of 316L longitudinal welding seam formed by laser-MIG hybrid welding technology under the different flow rate ratios of Ar-N2 shielding gas. (a) top region;(b) upper middle region;(c) middle region;(d) lower middle region

    图  7   不同Ar-N2气流量比的激光-MIG复合焊接316L不锈钢纵向焊缝X射线衍射图

    Figure  7.   XRD patterns of 316L longitudinal welding seam formed by laser-MIG hybrid welding under the different flow rate ratios of Ar-N2 shielding gas

    图  8   不同Ar-N2气体流量比的激光-MIG复合焊接316L不锈钢纵向焊缝的显微硬度

    Figure  8.   Vickers hardness of 316L longitudinal welding seam formed by laser-MIG hybrid welding under the different flow rate ratios of Ar-N2 shielding gas

    图  9   不同Ar-N2气体流量比的激光-MIG复合焊接316L不锈钢纵向焊缝的开路电位曲线

    Figure  9.   Open circuit curves of 316L longitudinal welding seam formed by laser-MIG hybrid welding under the different flow rate ratios of Ar-N2 shielding gas

    图  10   不同Ar-N2气体流量比的激光-MIG复合焊接316L不锈钢的纵向焊缝电化学阻抗图

    Figure  10.   Electrochemical impedance spectroscopy of the 316L longitudinal welding seam formed by laser-MIG hybrid welding technology under the different flow rate ratios of Ar-N2 shielding gas. (a) Nyquist; (b) Bode plot

    图  11   316L纵向焊缝在3.5% NaCl溶液中的等效电路

    Figure  11.   Simplified equivalent circuit of 316L longitudinal welding seam in 3.5% NaCl solution

    图  12   不同Ar-N2气体流量比的激光-MIG复合焊接316L不锈钢纵向焊缝的动电位极化曲线

    Figure  12.   Dynamic cycle polarization curves of 316L stainless steel longitudinal welding seam formed by laser-MIG hybrid welding technology under the different flow rate ratios of Ar-N2 shielding gas

    图  13   不同Ar-N2气体流量比的激光-MIG复合焊接316L不锈钢纵向焊缝点蚀电位与自腐蚀电位

    Figure  13.   Epit and Ecorr of the 316L longitudinal welding seam formed by laser-MIG hybrid welding technology under the different flow rate ratios of Ar-N2 shielding gas

    图  14   激光-MIG复合焊接316L钢熔池的吸氮与脱氮

    Figure  14.   Schematic of nitrogen absorption and desorption during the 316L laser-MIG hybrid welding process.

    表  1   Bohler 316L不锈钢焊丝的化学成分(质量分数,%)

    Table  1   Chemical composition of Bohler 316L stainless steel solid wire

    CSiMnCrNiMoPSCuFe
    0.0150.451.618.512.02.60.0170.0070.04余量
    下载: 导出CSV

    表  2   不同Ar-N2气体流量比的激光-MIG复合焊接316L不锈钢焊道尺寸

    Table  2   Dimensions of 316L stainless steel welding bead formed by laser-MIG hybrid welding technology under the different flow rate ratios of Ar-N2 shielding gas

    Ar∶N2
    气体流量比
    熔宽
    W/mm
    熔深
    H/mm
    余高
    h/mm
    24∶17.933.782.80
    22.5∶2.57.853.672.59
    20∶57.613.702.66
    17.3∶7.77.493.662.78
    下载: 导出CSV

    表  3   不同Ar-N2气体流量比的纵向焊缝顶部区域树枝状晶的一次枝晶间距和二次枝晶间距

    Table  3   Primary dendrite spacing and secondary dendrite spacing of dendritic crystals in the top region of the longitudinal welding seam formed under the different flow rate ratios of Ar-N2 shielding gas

    Ar : N2
    气体流量比
    一次枝晶间距
    S1 / μm
    二次枝晶间距
    S2/ μm
    24 : 121.387.46
    22.5 : 2.518.307.74
    20 : 516.626.96
    17.3 : 7.712.087.32
    下载: 导出CSV

    表  4   不同Ar-N2气流量比下的激光-MIG复合焊接316L纵向焊缝的电化学阻抗谱参数

    Table  4   Electrochemical impedance spectroscopy parameters of 316L longitudinal welding seam formed by laser-MIG hybrid welding technology under the different flow rate ratios of Ar-N2 shielding gas

    Ar : N2
    气体流量比
    溶液电阻
    Rs/(Ω·cm2)
    电荷转移电阻
    Rp/(kΩ·cm2)
    比例系数
    Y0/10−6−1·cm−2·sn)
    经验系数
    n
    双电层电容
    Cdl/(μF·cm−2)
    24 : 125.235.0764.810.8419.08
    22.5 : 2.518.117.2545.150.8715.60
    20 : 524.268.4449.100.8921.36
    17.3 : 7.725.496.3058.040.8518.37
    下载: 导出CSV

    表  5   不同Ar-N2气体流量比的激光-MIG电弧复合焊接316L不锈钢纵向焊道的动电位循环极化曲线

    Table  5   Dynamic cycle polarization curves of the welding seam formed by laser-MIG hybrid welding technology under the different flow rate ratios of Ar-N2 shielding gas

    Ar∶N2
    气流量比
    自腐蚀电位
    Ecorr/V
    自腐蚀电流
    Icorr/(10−7A·cm−2)
    点蚀电位
    Epit/V
    再钝化电位
    Erep/V
    电位误差
    (EpitEcorr)/V
    电位误差
    (Erep Ecorr)/V
    24∶1−0.0575.310.516−0.098 80.573−0.041 8
    22.5∶2.5−0.0764.550.575−0.138 60.651−0.062 6
    20∶5−0.1597.431.203−0.091 71.3620.067 3
    17.3∶7.7−0.1230.5351.047−0.10111.1700.021 9
    下载: 导出CSV
  • [1]

    Bajaj P, Hariharan A, Kini A, et al. Steels in additive manufacturing: A review of their microstructure and properties[J]. Materials Science and Engineering:A, 2020, 772: 138633. doi: 10.1016/j.msea.2019.138633

    [2]

    Chen X, Li J, Cheng X, et al. Microstructure and mechanical properties of the austenitic stainless steel 316L fabricated by gas metal arc additive manufacturing[J]. Materials Science and Engineering:A, 2017, 703: 567 − 577. doi: 10.1016/j.msea.2017.05.024

    [3]

    Zhu Zhengwu, Ma Xiuquan, Wang Chunming, et al. Grain refinement and orientation alternation of 10 mm 316L welds prepared by magnetic field assisted narrow gap laser-MIG hybrid welding[J]. Materials Characterization, 2020, 164: 110311. doi: 10.1016/j.matchar.2020.110311

    [4] 陈志伟, 马程远, 陈波, 等. 激光-MIG复合焊接中厚度不锈钢组织及性能研究[J]. 激光与光电子学进展, 2020, 57(23): 213 − 220.

    Chen Zhiwei, Ma Chengyuan, Chen Bo, et al. Study on microstructure and properties of medium-thick stainless steel by laser-MIG hybrid welding[J]. Laser & Optoelectronics Progress, 2020, 57(23): 213 − 220.

    [5] 李旭文, 宋刚, 张兆栋, 等. 激光诱导电弧复合增材制造316L不锈钢的组织和性能[J]. 中国激光, 2019, 46(12): 101 − 109.

    Li Xuwen, Song Gang, Zhang Zhaodong, et al. Microstructure and properties of 316L stainless steel produced by laser-induced arc hybrid additive manufacturing[J]. Chinese Journal of Lasers, 2019, 46(12): 101 − 109.

    [6]

    Hänninen H, Romu J, Ilola R, et al. Effects of processing and manufacturing of high nitrogen-containing stainless steels on their mechanical, corrosion and wear properties[J]. Journal of Materials Processing Technology, 2001, 117(3): 424 − 430. doi: 10.1016/S0924-0136(01)00804-4

    [7]

    Ming Zhu, Wang Kehong, Liu Zeng. Effect of the cooling rate on the microstructure and mechanical properties of high nitrogen stainless steel weld metals[J]. China Welding, 2020, 29(2): 48 − 52.

    [8]

    Li D, Yang D, Zhang G, et al. Microstructure and mechanical properties of welding metal with high Cr-Ni austenite wire through Ar-He-N2 gas metal arc welding[J]. Journal of Manufacturing Processes, 2018, 35: 190 − 196. doi: 10.1016/j.jmapro.2018.07.026

    [9]

    Reyes-Hernández D, Manzano-Ramírez A, Encinas A, et al. Addition of nitrogen to GTAW welding duplex steel 2205 and its effect on fatigue strength and corrosion[J]. Fuel, 2017, 198: 165 − 169. doi: 10.1016/j.fuel.2017.01.008

    [10]

    Feng H, Li H, Wu X, et al. Effect of nitrogen on corrosion behaviour of a novel high nitrogen medium-entropy alloy CrCoNiN manufactured by pressurized metallurgy[J]. Journal of Materials Science & Technology, 2018, 34(10): 1781 − 1790.

    [11]

    Fu Y, Wu X, Han E H, et al. Effects of nitrogen on the passivation of nickel-free high nitrogen and manganese stainless steels in acidic chloride solutions[J]. Electrochimica Acta, 2009, 54(16): 4005 − 4014. doi: 10.1016/j.electacta.2009.02.024

    [12]

    Metikoš-Huković M, Babić R, Grubač Z, et al. High corrosion resistance of austenitic stainless steel alloyed with nitrogen in an acid solution[J]. Corrosion Science, 2011, 53(6): 2176 − 2183. doi: 10.1016/j.corsci.2011.02.039

    [13]

    Ribic B, Palmer T A, DebRoy T. Problems and issues in laser-arc hybrid welding[J]. International Materials Reviews, 2009, 54(4): 223 − 244. doi: 10.1179/174328009X411163

    [14]

    Wang C, Liu T G, Zhu P, et al. Study on microstructure and tensile properties of 316L stainless steel fabricated by CMT wire and arc additive manufacturing[J]. Materials Science and Engineering:A, 2020, 796: 140006. doi: 10.1016/j.msea.2020.140006

    [15]

    Wu W, Xue J, Wang L, et al. Forming process, microstructure, and mechanical properties of thin-walled 316L stainless steel using speed-cold-welding additive manufacturing[J]. Metals, 2019, 9(1): 109. doi: 10.3390/met9010109

    [16] 鲍亮亮, 王勇, 张洪杰, 等. EQ70钢激光电弧复合焊焊接热循环及其对热影响区组织演变的影响[J]. 焊接学报, 2021, 42(3): 26-33.

    Bao Liangliang, Wang Yong, Zhang Hongjie, et al. Welding thermal cycle of the laser-arc hybrid welding of the EQ70 steel and its effects on the microstructure evolution of the heat affected zone[J] Transactions of the China Welding Institution, 2021, 42(3): 26-33.

    [17] 王子然, 左善超, 张善保, 等. 硅对304不锈钢GMAW高速焊接头组织性能的影响[J]. 焊接学报, 2020, 41(2): 18 − 23. doi: 10.12073/j.hjxb.20190912001

    Wang Ziran, Zuo Shanchao, Zhang Shanbao, et al. Effect of silicon on microstructure and properties of highspeed GMAW welded joint of 304 stainless steel[J]. Transactions of the China Welding Institution, 2020, 41(2): 18 − 23. doi: 10.12073/j.hjxb.20190912001

    [18]

    Wu C, Li S, Zhang C, et al. Microstructural evolution in 316LN austenitic stainless steel during solidification process under different cooling rates[J]. Journal of Materials Science, 2016, 51(5): 2529 − 2539. doi: 10.1007/s10853-015-9565-0

    [19]

    Kong D, Dong C, Ni X, et al. Mechanical properties and corrosion behavior of selective laser melted 316L stainless steel after different heat treatment processes[J]. Journal of Materials Science & Technology, 2019, 35(7): 1499 − 1507.

    [20]

    Chen L, Liu W, Dong B, et al. Insight into electrochemical passivation behavior and surface chemistry of 2205 duplex stainless steel: effect of tensile elastic stress[J]. Corrosion Science, 2021, 193: 109903.

    [21]

    Lodhi M J K, Deen K M, Haider W. Corrosion behavior of additively manufactured 316L stainless steel in acidic media[J]. Materialia, 2018, 2: 111 − 121. doi: 10.1016/j.mtla.2018.06.015

    [22]

    Zhang Y, Song B, Ming J, et al. Corrosion mechanism of amorphous alloy strengthened stainless steel composite fabricated by selective laser melting[J]. Corrosion Science, 2020, 163: 108241. doi: 10.1016/j.corsci.2019.108241

    [23]

    Jiang Z, Feng H, Li H, et al. Relationship between microstructure and corrosion behavior of martensitic high nitrogen stainless steel 30Cr15Mo1N at different austenitizing temperatures[J]. Materials, 2017, 10(8): 861. doi: 10.3390/ma10080861

    [24]

    Fellman A, Kujanpää V. The effect of shielding gas composition on welding performance and weld properties in hybrid CO2 laser–gas metal arc welding of carbon manganese steel[J]. Journal of Laser Applications, 2006, 18(1): 12 − 20. doi: 10.2351/1.2164481

    [25]

    Mu Z, Chen X, Zheng Z, et al. Laser cooling arc plasma effect in laser-arc hybrid welding of 316L stainless steel[J]. International Journal of Heat and Mass Transfer, 2019, 132: 861 − 870. doi: 10.1016/j.ijheatmasstransfer.2018.12.050

    [26]

    Hertzman S, Jarl M. A thermodynamic analysis of the Fe-Cr-N system[J]. Metallurgical Transactions A, 1987, 18(10): 1745 − 1752. doi: 10.1007/BF02646206

    [27]

    Kah P, Martikainen J. Influence of shielding gases in the welding of metals[J]. The International Journal of Advanced Manufacturing Technology, 2013, 64(9-12): 1411 − 1421. doi: 10.1007/s00170-012-4111-6

    [28]

    Suutala N, Takalo T, Moisio T. Ferritic-austenitic solidification mode in austenitic stainless steel welds[J]. Metallurgical Transactions A, 1980, 11(5): 717 − 725. doi: 10.1007/BF02661201

    [29]

    Li H, Jiang Z, Yang Y, et al. Pitting corrosion and crevice corrosion behaviors of high nitrogen austenitic stainless steels[J]. International Journal of Minerals, Metallurgy and Materials, 2009, 16(5): 517 − 524. doi: 10.1016/S1674-4799(09)60090-X

  • 期刊类型引用(8)

    1. 王恒,李国艳,李莎,桂海莲,王涛. 铜/钢复合板制备工艺及界面调控研究进展. 中国有色金属学报. 2025(01): 99-125 . 百度学术
    2. 赵健,石磊,陆煜,崔烺,谢会起,吕竹文,王英. Ni中间层对铜/钢电子束焊接头组织与界面行为的影响. 兵器材料科学与工程. 2025(02): 126-132 . 百度学术
    3. 杨栈琳,刘岩,曹博强,刘发,闫庆森,刘军华,刘兆真,李博. 增材制造铜/钢双金属材料研究进展. 精密成形工程. 2024(02): 117-129 . 百度学术
    4. 周文坤,刁健帅,张敏,薛添淇,马克,毛威,马宏伟. 合金元素对Cu-Ni基熔覆层组织和性能的影响. 电焊机. 2024(11): 9-18+43 . 百度学术
    5. 麻相龙,曹睿,董浩,王彩芹,张龙戈,闫英杰. 316L不锈钢/T2紫铜热等静压扩散连接接头的微观组织与力学性能. 焊接学报. 2023(04): 58-62+132-133 . 本站查看
    6. 张敏,雷龙宇,杜明科,张志强,高俊,郜雅彦,王博玉. 电弧沉积条件下Cu基熔覆层的微观组织及性能研究. 焊管. 2022(05): 16-21 . 百度学术
    7. 陈彦龙,舒林森,宋少东. 304L/316异种钢薄板激光增材焊接工艺及性能研究. 激光与光电子学进展. 2022(23): 200-208 . 百度学术
    8. 朱元皓,董红刚,吴宝生,郭柏征,李鹏. 液相分离对T2紫铜/316L不锈钢接头组织及性能的影响. 焊接学报. 2021(11): 14-21+89+97-98 . 本站查看

    其他类型引用(2)

图(14)  /  表(5)
计量
  • 文章访问数:  535
  • HTML全文浏览量:  45
  • PDF下载量:  68
  • 被引次数: 10
出版历程
  • 收稿日期:  2021-04-20
  • 网络出版日期:  2021-12-22
  • 刊出日期:  2021-12-24

目录

/

返回文章
返回