高级检索

316L不锈钢/T2紫铜热等静压扩散连接接头的微观组织与力学性能

麻相龙, 曹睿, 董浩, 王彩芹, 张龙戈, 闫英杰

麻相龙, 曹睿, 董浩, 王彩芹, 张龙戈, 闫英杰. 316L不锈钢/T2紫铜热等静压扩散连接接头的微观组织与力学性能[J]. 焊接学报, 2023, 44(4): 58-62. DOI: 10.12073/j.hjxb.20220522002
引用本文: 麻相龙, 曹睿, 董浩, 王彩芹, 张龙戈, 闫英杰. 316L不锈钢/T2紫铜热等静压扩散连接接头的微观组织与力学性能[J]. 焊接学报, 2023, 44(4): 58-62. DOI: 10.12073/j.hjxb.20220522002
MA Xianglong, CAO Rui, DONG Hao, WANG Caiqin, ZHANG Longge, YAN Yingjie. Microstructure and mechanical properties of 316L stainless steel/T2 copper hot isostatic bonding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 58-62. DOI: 10.12073/j.hjxb.20220522002
Citation: MA Xianglong, CAO Rui, DONG Hao, WANG Caiqin, ZHANG Longge, YAN Yingjie. Microstructure and mechanical properties of 316L stainless steel/T2 copper hot isostatic bonding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 58-62. DOI: 10.12073/j.hjxb.20220522002

316L不锈钢/T2紫铜热等静压扩散连接接头的微观组织与力学性能

基金项目: 国家自然科学基金资助项目(52175325,51961024)
详细信息
    作者简介:

    麻相龙,博士研究生;主要研究方向异种金属连接;Email: 3498915896@qq.com

    通讯作者:

    曹睿,博士,教授,博士研究生导师;Email: caorui@lut.edu.cn

  • 中图分类号: TG 457.1

Microstructure and mechanical properties of 316L stainless steel/T2 copper hot isostatic bonding joint

  • 摘要: 采用热等静压(hot isostatic pressing,HIP)工艺对棒材316L不锈钢/T2紫铜进行连接,分析连接界面微观组织和力学性能.结果表明,在塑性变形和扩散反应的连接机制下,异种金属连接接头结合良好,两侧基体元素发生了明显的互扩散,最终形成了3.9 μm厚的扩散层,扩散层分为两侧的扩散影响区(diffusion affected zone,DAZ)和中间反应层(reaction layer,RL),扩散层及其附近的T2紫铜侧有树枝状的γ-Fe相、条状α(Cu, Ni)相和不规则块状富Cr相析出. 硬度试验结果表明,连接接头硬度要高于较弱T2紫铜母材,接头平均硬度为94 HV0.1,未出现硬度突变的现象,表明接头没有脆性金属间化合物生成,拉伸试验最终在T2紫铜母材断裂,断裂机制为韧性断裂,最大抗拉强度为165 MPa,接头及其附近析出相的弥散分布形成了第二相强化机制,阻碍位错的运动,最终使得连接接头具有较高的硬度和较好的结合强度.
    Abstract: Hot isostatic pressing (HIP) was used to bond the bar 316L stainless steel/T2 copper, and the microstructure and mechanical properties of the bonding interface were analyzed. The results show that the dissimilar metal joints are well bonded under the bonding mechanism of plastic deformation and diffusion reaction, and the elements on both sides of the matrix obviously have mutual diffusion. Finally, the diffusion layer with a thickness of 3.9 μm is formed. The diffusion layer is divided into the diffusion-affected zone (DAZ) on both sides and the reaction layer (RL) in the middle. Dendritic γ-Fe phase, strip α (Cu, Ni) phase, and irregular massive Cr-rich phase precipitate on the diffusion layer and adjacent side of T2 copper. Hardness test results show that the hardness of the joint is higher than that of the weak T2 base metal. The average hardness of the joint is 94 HV0.1, and there is no hardness mutation, which that indicates no brittle intermetallic compound was formed. A ductile fracture happened at the T2 base metal during the tensile test, with the maximum tensile strength of 165 MPa. Joints and their adjacent diffuse distribution of the precipitated phase formed a second phase strengthening mechanism, which has hindered the dislocation movement, and thus enabled the joint with better hardness and bonding strength.
  • 图  1   钢/铜热等静压扩散连接示意图

    Figure  1.   Schematic diagram of steel/copper HIP diffusion bonding

    图  2   钢/铜连接接头宏观形貌

    Figure  2.   Macro-morphology of the steel/copper joints

    图  3   316L不锈钢的微观组织

    Figure  3.   Microstructure of the 316L stainless steel

    图  4   T2紫铜的微观组织

    Figure  4.   Microstructure of the T2 copper

    图  5   接头微观形貌及其附近析出相

    Figure  5.   Micro morphology of joint and precipitated phase near the joint. (a) BEM picture; (b) diffusion zone; (c) micro morphology of joint; (d) T2 region near the joint

    图  6   图5b接头扩散区线扫描结果

    Figure  6.   Line scanning results of joint diffusion zone in Fig.5b

    图  7   接头附近显微维氏硬度分布

    Figure  7.   Vickers microhardness distribution near the joint

    图  8   接头的抗拉强度和断后伸长率

    Figure  8.   Tensile strength and elongation of joint

    图  9   拉伸试样的断口形貌

    Figure  9.   Fracture morphology of the tensile specimen

    表  1   T2紫铜和316L不锈钢的化学成分(质量分数,%)

    Table  1   Chemical compositions of the T2 copper and 316L stainless steel

    材料FeCuCCrNiMnMoPb
    T20.005余量0.005
    316L余量0.0316.0712.012.002.21
    下载: 导出CSV

    表  2   图5a中点扫描的结果(质量分数, %)

    Table  2   Results of point scanning in Fig. 5a

    位置FeCrCuNi可能的析出相
    121.43.172.72.8α(Cu, Ni)相
    222.84.470.22.6γ-Fe相
    33059.2
    5.2富Cr析出相
    下载: 导出CSV
  • [1] 李亚江, 王娟. 异种难焊材料的焊接及工程应用[M]. 北京: 化学工业出版社, 2014.

    Li Yajiang, Wang Juan. Welding and engineering appliciation of dissimilar refractory materials[M]. Beijing: Chemical Industry Press, 2014.

    [2] 张义. 异种金属焊接技术[M]. 北京: 机械工业出版社, 2016.

    Zhang Yi. Dissimilar metal welding technology[M]. Beijing: China Machine Press, 2016.

    [3]

    Jiang Chao, Long Weimin, Feng Jian, et al. Thermal fatigue behavior of copper/stainless steel explosive welding joint[J]. China Welding, 2021, 30(4): 25 − 29.

    [4] 尚文静. 热等静压(HIP)技术和设备的发展及应用[J]. 有色冶金设计与研究, 2010, 32(2): 18 − 21.

    Shang Wenjing. Development and application of HIP technology and equipment[J]. Nonferrous Metallurgy Design and Research, 2010, 32(2): 18 − 21.

    [5] 高炜. 永久型阴极板导电杆铜−钢异种金属连接工艺及性能分析[D]. 兰州: 兰州理工大学, 2017.

    Gao Wei. Connecting process and performance analysis of copper and steel dissimilar metal for permanent Cathode plate conductive rod [D]. Lanzhou: Lanzhou University of Technology, 2017.

    [6]

    Zhang H, Jiao K X, Zhang J L, et al. Experimental and numerical investigations of interface characteristics of copper/steel composite prepared by explosive welding[J]. Materials & Design, 2018, 154: 140 − 152.

    [7]

    Suman Patra, Kanwer Singh Arora, Mahadev Shome, et al. Interface characteristics and performance of magnetic pulse welded copper-steel tubes[J]. Journal of Materials Processing Technology, 2017, 245: 278 − 286. doi: 10.1016/j.jmatprotec.2017.03.001

    [8]

    Wei R, Zhao S X, Dong H, et al. Enhancing the CuCrZr/316L HIP-joint by Ni electroplating[J]. Fusion Engineering and Design, 2017, 117: 58 − 62. doi: 10.1016/j.fusengdes.2017.02.039

    [9] 李继红, 张云龙, 杜明科, 等. 合金元素对铜/钢接头连接机理及性能的影响[J]. 焊接学报, 2021, 42(3): 34 − 41.

    Li Jihong, Zhang Yunlong, Du Mingke, et al. Effect of alloying elements on bonding mechanism and properties of copper/steel joint[J]. Transactions of the China Welding Institution, 2021, 42(3): 34 − 41.

    [10] 丁文, 王小京, 刘宁, 等. CoCrFeMnNi高熵合金作为中间层的Cu/304不锈钢扩散连接研究[J]. 金属学报, 2020, 56(8): 1084 − 1090.

    Ding Wen, Wang Xiaojing, Liu Ning, et al. Diffusion bonding of Cu/304 stainless steel with CoCrFeMnNi high entropy alloy as intermediate layer[J]. Acta Metallurgica Sinica, 2020, 56(8): 1084 − 1090.

    [11]

    Li Y, Parfitt D, Flewitt P E J, et al. Microstructural considerations of enhanced tensile strength and mechanical constraint in a copper/stainless steel brazed joint[J]. Materials Science and Engineering:A, 2020, 796: 139992. doi: 10.1016/j.msea.2020.139992

    [12]

    Zhao X, Duan L, Wang Y. Fast interdiffusion and Kirkendall effects of SiC-coated C/SiC composites joined by a Ti-Nb-Ti interlayer via spark plasma sintering[J]. Journal of the European Ceramic Society, 2019, 39(5): 1757 − 1765. doi: 10.1016/j.jeurceramsoc.2019.01.020

    [13] 黄伶明, 王万景, 王纪超, 等. 低活化钢双壁管的热等静压扩散连接[J]. 焊接学报, 2022, 43(1): 92 − 97.

    Huang Lingming, Wang Wanjing, Wang Jichao, et al. HIP diffusion bonding of reduced activation steel double wall tube[J]. Transactions of the China Welding Institution, 2022, 43(1): 92 − 97.

    [14]

    Aboudi D, Lebaili S, Taouinet M, et al. Microstructure evolution of diffusion welded 304L/Zircaloy4 with copper interlayer[J]. Materials & Design, 2017, 116: 386 − 394.

    [15]

    Yang Ming, Ma Honghao, Shen Zhaowu, et al. Study on explosive welding for manufacturing meshing bonding interface of CuCrZr to 316L stainless steel[J]. Fusion Engineering and Design, 2019, 143: 106 − 114. doi: 10.1016/j.fusengdes.2019.03.137

    [16]

    Poo-arporn Y, Duangnil S, Bamrungkoh D, et al. Gas tungsten arc welding of copper to stainless steel for ultra-high vacuum applications[J]. Journal of Materials Processing Technology, 2020, 277: 116490. doi: 10.1016/j.jmatprotec.2019.116490

  • 期刊类型引用(15)

    1. 田志杰,刘力源,马核,颜旭,孙宇明. 2A14铝合金搅拌摩擦焊缝根部应力应变模拟与分析. 导弹与航天运载技术. 2022(01): 105-109 . 百度学术
    2. 姜瀚彬,高炜欣,石萌萌. 基于卷积神经网络的激光超声缺陷检测研究. 激光杂志. 2022(07): 59-64 . 百度学术
    3. 胡文刚,陆云鹏,郭世雄,曾立鑫,白冰. 基于DR数字射线成像技术的铝合金焊缝缺陷检测. 焊接. 2021(02): 46-51+64 . 百度学术
    4. 赵海燕,冯宽,张楠,邓义刚. 基于ISO 25239-4标准搅拌摩擦焊工艺评定的应用. 机械制造文摘(焊接分册). 2021(02): 23-25+28 . 百度学术
    5. 郭帅男,唐诗,孙启明,赵斌兴,高椿明,张萍,刘婷婷,张长东. 金属增材工艺裂缝缺陷的脉冲光声检测技术. 光电子·激光. 2021(12): 1307-1312 . 百度学术
    6. 李玉海,赵中华,童有为. 限幅采样技术在激光超声无损检测中的应用. 广西大学学报(自然科学版). 2020(03): 667-673 . 百度学术
    7. 王胜起. 基于激光超声波探测的户外运动器械磨损程度检测. 激光杂志. 2020(06): 54-57 . 百度学术
    8. 袁久鑫,秦训鹏. 激光超声无损检测技术研究进展. 表面工程与再制造. 2019(01): 30-34+42 . 百度学术
    9. 李江澜. 机械零件表面缺陷的激光超声检测技术. 激光杂志. 2019(07): 24-27 . 百度学术
    10. 姬冠妮,王亚亚,史二娜. 激光超声检测技术的材料表面微小损伤检测. 激光杂志. 2019(09): 65-68 . 百度学术
    11. 王波,高双胜,马明. 2024铝合金薄板搅拌摩擦焊接头缺陷超声无损检测. 机械制造与自动化. 2019(05): 54-56 . 百度学术
    12. 李海洋,李巧霞,王召巴,潘强华. 基于激光超声临界频率的表面缺陷检测与评价. 光学学报. 2018(07): 134-142 . 百度学术
    13. 迟大钊,齐聪成. 国内焊接缺陷声学无损检测研究综述. 精密成形工程. 2018(01): 74-81 . 百度学术
    14. 闫政. 激光超声波探测中的智能感应设备的优化设计. 激光杂志. 2016(12): 34-38 . 百度学术
    15. 刘波. 搅拌摩擦焊的缺陷类型及其检测技术探析. 科技创新与应用. 2015(35): 88-89 . 百度学术

    其他类型引用(16)

图(9)  /  表(2)
计量
  • 文章访问数:  205
  • HTML全文浏览量:  59
  • PDF下载量:  49
  • 被引次数: 31
出版历程
  • 收稿日期:  2022-05-07
  • 网络出版日期:  2023-04-13
  • 刊出日期:  2023-04-24

目录

    /

    返回文章
    返回