Investigation on the radiation resistance of quenching and tempering CLAM steel weld
-
摘要: 焊接是聚变堆包层装配的重要手段,开展焊缝的离子辐照效应研究对于提高核反应堆核心部件的使用寿命具有重要意义. 为对比研究中国低活化马氏体钢(China low activation martensitic,CLAM)焊态焊缝和调质处理焊缝的离子辐照效应,试验采用150 keV的He+在室温下对CLAM钢焊缝进行离子辐照. 利用X射线衍射(X-ray diffraction,XRD)和连续刚度纳米压痕技术(continuous stiffness measurement,CSM)等检测方法研究两种状态的焊缝辐照前后晶体结构和力学性能的变化. 结果表明,在15 dpa辐照剂量下,焊缝均出现了衍射峰的半峰宽宽化和衍射角向小角度偏移,以及焊态焊缝的衍射峰强度降低;焊缝的力学性能均有明显的辐照硬化和弹性模量降低. 但与焊态焊缝相比,调质处理后焊缝的辐照效应相对较弱,说明调质处理可以有效提高CLAM钢焊缝的抗辐照性能.Abstract: Welding is an important mean of assembling the cladding layer of fusion reactor. The study of ion irradiation effect of weld is of great significance for improving the service life of nuclear reactor core components. In order to compare the ion irradiation effect of China low activated martensitic steel (CLAM) welded weld and tempered weld, the welds were subjected to He+ irradiation at room temperature of 150 keV. X-ray diffraction (XRD) and continuous stiffness nano-indentation technique (CSM) were used to study the changes of the crystal structure and the mechanical properties of the weld in two states before and after irradiation. The results show that under 15dpa ion irradiation, the peak width widens and the diffraction angle shifts to small angle in the weld, moreover, the diffraction peak intensity of welded weld reduces. In addition, the irradiation hardening and the elastic modulus decreasing occur in the weld after irradiation. However, compared with the welded weld, the irradiation effect of the tempered weld is relatively weak, indicating that the anti-irradiation performance of CLAM steel weld can be improved by quenching and tempering.
-
-
表 1 CLAM钢的化学成分(质量分数,%)
Table 1 Chemical composition of CLAM steel
C Cr W V Mn Ta Ni Si S P Fe 0.12 8.9 1.44 0.20 0.35 0.15 0.02 0.08 0.003 < 0.0005 余量 表 2 CLAM钢焊接参数
Table 2 Welding parameters of CLAM steel
焊层 焊接电流
I/A焊接电压
U/V焊接速度
v/(mm·s−1)氩气流量
q/(L·min−1)打底焊 120 12 1 10 盖面焊 125 表 3 XRD统计获得的CLAM钢焊缝辐照前后衍射峰的变化
Table 3 The changes of diffraction peak of CLAM steel weld before and after irradiation were obtained by XRD
样品 半峰宽w/(°) 宽化率λ(%) 强度I(a.u.) 衍射角2θ/(°) 峰的偏移δ/(°) 焊态焊缝 未辐照 0.252 43.3 1064 44.944 小角度偏移0.154 辐照 0.361 596 44.790 调质处理焊缝 未辐照 0.146 28.1 1086 44.927 小角度偏移0.118 辐照 0.187 1199 44.809 -
[1] Holdren J P. Fusion energy in context: Its fitness for the long term[J]. Science, 1978, 200: 168 − 180. doi: 10.1126/science.200.4338.168
[2] 黄群英, 郁金楠, 万发荣, 等. 聚变堆低活化马氏体钢的发展[J]. 核科学与工程, 2004, 24(1): 56 − 64. Huang Qunying, Yu Jinnan, Wan Farong, et al. The development of low activation martensitic steels for fusion reactor[J]. Chinese Journal of Nuclear Science and Engineering, 2004, 24(1): 56 − 64.
[3] Abdou M A, Morley N B, Molentsev S, et al. Blanket/first wall challenges and required R&D on the pathway to DEMO[J]. Fusion Engineering and Design, 2015, 100: 2 − 43. doi: 10.1016/j.fusengdes.2015.07.021
[4] Ramu Murugan, Prabhu Venugobal, Thyla Pudukkarai Ramaswami, et al. Studies on the effect of weld defect on the fatigue behavior of welded structures[J]. China Welding, 2018, 27(1): 53 − 59.
[5] Xin Y, Qiu J, Ju X, et al. Microstructural evolution of the China Low Activation Martensitic (CLAM) steel irradiated by H and He ion beams[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2009, 267(18): 3166 − 3169. doi: 10.1016/j.nimb.2009.06.073
[6] Liu P P, Zhao M Z, Zhu Y M, et al. Effects of carbide precipitate on the mechanical properties and irradiation behavior of the low activation martensitic steel[J]. Journal of Alloys and Compounds, 2013, 579: 599 − 605. doi: 10.1016/j.jallcom.2013.07.085
[7] Liu P P, Zhan Q, Fu Z Y, et al. Surface and internal microstructure damage of He-ion-irradiated CLAM steel studied by cross-sectional transmission electron microscopy[J]. Journal of Alloys and Compounds, 2015, 649: 859 − 864. doi: 10.1016/j.jallcom.2015.07.177
[8] Jiang Siben, Peng Lei, Ge Hongen, et al. He and H irradiation effects on the nanoindentation hardness of CLAM steel[J]. Journal of Nuclear Materials, 2014, 455(1-3): 335 − 338. doi: 10.1016/j.jnucmat.2014.06.053
[9] 胡杰, 姜志忠, 黄继华, 等. 热处理工艺对CLAM钢电子束焊缝显微组织与冲击韧性的影响[J]. 焊接学报, 2012, 33(11): 67 − 71. Hu Jie, Jiang Zhizhong, Huang Jihua, et al. Effect of heat treatment on microstructure and impact toughness of CLAM steel electron beam weld[J]. Transactions of the China Welding Institution, 2012, 33(11): 67 − 71.
[10] Stoller R E, Toloczko M B, Was G S, et al. On the use of SRIM for computing radiation damage exposure[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 310: 75 − 80. doi: 10.1016/j.nimb.2013.05.008
[11] Oliver W C, Pharr G M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology[J]. Journal of Materials Research, 2004, 19(1): 3 − 20. doi: 10.1557/jmr.2004.19.1.3
[12] Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 6(7): 1564 − 1583.
[13] Nix William D, Gao H. Indentation size effects in crystalline materials: a law for strain gradient plasticity[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(3): 411 − 425. doi: 10.1016/S0022-5096(97)00086-0
[14] Lee E H, Mansur L K. Relationships between phase stability and void swelling in Fe-Cr-Ni alloys during irradiation[J]. Metallurgical Transactions A, 1992, 23(7): 1977 − 1986. doi: 10.1007/BF02647545
[15] Stubbins J F, Garner F A. Swelling and microstructure of high purity nickel irradiated with fast neutrons in EBR-II[J]. Journal of Nuclear Materials, 1992, 191-194: 1295 − 1299. doi: 10.1016/0022-3115(92)90683-C
[16] Lemine O M. Microstructural characterisation of nanoparticles using, XRD line profiles analysis, FE-SEM and FT-IR[J]. Superlattices and Microstructures, 2009, 45(6): 576 − 582. doi: 10.1016/j.spmi.2009.02.004
[17] Wan H, Si N C, Chen M K. Strain and structure order variation of pure aluminum due to helium irradiation[J]. RSC Advances, 2016, 5: 75390 − 75394.
[18] Bringa E M, Monk J D, Caro A, et al. Are nanoporous materials radiation resistant[J]. Nano Letters, 2012, 12(7): 3351 − 3355. doi: 10.1021/nl201383u
[19] Tao N R, Wang Z B, Tong W P, et al. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment[J]. Acta Materialia, 2002, 50(18): 4603 − 4616. doi: 10.1016/S1359-6454(02)00310-5
[20] Ullmaier H. The influence of helium on the bulk properties of fusion reactor structural materials[J]. Nuclear Fusion, 1984, 24(8): 1039 − 1083. doi: 10.1088/0029-5515/24/8/009
[21] Kim I, Hunn J, Hashimoto N. Defect and void evolution in oxide dispersion strengthened ferritic steels under 3.2 MeV Fe ion irradiation with simultaneous helium injection[J]. Journal of Nuclear Materials, 2000(250): 264 − 274.
[22] 于忠奇, 李雪春, 崔有山, 等. 塑性变形中晶体缺陷的变化对材料弹性模量的影响[C]//2002年中国机械工程学会年会. 制造业与未来中国——2002年中国机械工程学会年会论文集. 北京: 机械工业出版社, 2002: 122 − 125. Yu Zhongqi, Li Xuechun, Cui Youshan, et al. Influence of crystal defect on elastic modulus of material during plastic deformation[C]//Annual meeting of China Mechanical Engineering Society in 2002. Manufacturing and the Future of China-Proceedings of the Annual meeting of the China Society of Mechanical Engineering in 2002. Beijing: China Machine Press, 2002: 122 − 125.
-
期刊类型引用(2)
1. 陈先锋,覃世军,汪青峰,曹金,卯鑫,刘鹏,冯星. 偏滤器穿管型结构材料的高温可靠性试验分析. 核聚变与等离子体物理. 2023(03): 283-289 . 百度学术
2. 雷玉成,张伟伟,刘丹,李鑫. 氦离子辐照对316L钢焊缝微观结构及性能影响. 焊接学报. 2021(08): 48-53+99-100 . 本站查看
其他类型引用(1)