高级检索

热辅助超声波增材制造设备设计与分析

王波, 孙志超, 张洪涛, 吴宝才, 胡振海

王波, 孙志超, 张洪涛, 吴宝才, 胡振海. 热辅助超声波增材制造设备设计与分析[J]. 焊接学报, 2019, 40(11): 111-118. DOI: 10.12073/j.hjxb.2019400297
引用本文: 王波, 孙志超, 张洪涛, 吴宝才, 胡振海. 热辅助超声波增材制造设备设计与分析[J]. 焊接学报, 2019, 40(11): 111-118. DOI: 10.12073/j.hjxb.2019400297
WANG Bo, SUN Zhichao, ZHANG Hongtao, WU Baocai, HU Zhenhai. Design and analysis on the device of heat-assisted ultrasonic additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(11): 111-118. DOI: 10.12073/j.hjxb.2019400297
Citation: WANG Bo, SUN Zhichao, ZHANG Hongtao, WU Baocai, HU Zhenhai. Design and analysis on the device of heat-assisted ultrasonic additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(11): 111-118. DOI: 10.12073/j.hjxb.2019400297

热辅助超声波增材制造设备设计与分析

基金项目: 山东省重点研发计划(2018GGX103032);泰山学者青年专家支持计划(tsqn20161062);山东省自然科学基金(ZR2019PEE010)

Design and analysis on the device of heat-assisted ultrasonic additive manufacturing

  • 摘要: 超声波增材制造技术在功能、复合材料的快速制备领域应用广泛,为克服现有超声波增材制造设备功率的限制,提出了一种大功率热辅助超声波增量制造设备,并采用COMSOL5.0有限元模拟软件对超声波振动系统进行辅助设计.该设备由超声波振动系统、压力机构、支撑行走机构、加热模块构成,焊接压头采用两侧对称结构,采用双换能器串联推-挽技术,显著增加超声焊接功率.并通过辅助加热模块提供额外的热量输入,提高被焊金属温度.并进行多层铜箔的超声波增量滚压焊接试验测试.结果表明,该热辅助超声波增材制造设备的焊接性能和焊接质量良好.
    Abstract: Ultrasonic coffin manufacturing technology was widely used in the field of function and rapid preparation of composite materials, in order to overcome the power constraints of existing ultrasonic additive manufacturing equipment, a manufacturing equipment of high power ultrasonic assisted heat increment was developed. The finite element simulation software COMSOL5.0 was used by the aided design of ultrasonic vibration system. The equipment is composed of ultrasonic vibration system, pressure mechanism, support walking mechanism and heating module, the symmetrical structure is used by the both sides of welding head, the double transducer series push-pull technology is used, the single ultrasonic welding power is greatly improved. At the same time the extra heat input is provided by the auxiliary heating module, and improve the temperature of the metal being soldered. And the ultrasonic incremental rolling welding test of multi-layer copper foil is carried out. The results show that the heat-assisted ultrasonic additive manufacturing equipment has excellent welding performance and welding quality.
  • [1] Kim T H, Yum J, Hu S J, et al. Process robustness of single lap ultrasonic welding of thin, dissimilar materials[J]. CIRP Annals, 2011, 60(1):17-20.
    [2] Yang J, Cao B. Investigation of resistance heat assisted ultrasonic welding of 6061 aluminum alloys to pure copper[J]. Materials & Design, 2015, 74:19-24.
    [3] Graff K F, Short M, Norfolk M. Very high power ultrasonic additive manufacturing (VHP UAM) for advanced materials[C]//Solid Freeform Fabrication Symposium, Austin, TX. 2010. 82-89.
    [4] 赵剑峰, 马智勇, 谢德巧, 等. 金属增材制造技术[J]. 南京航空航天大学学报, 2014, 46(5):675-683 Zhao Jianfeng, Ma Zhiyong, Xie Deqiao, et al. Metal additive manufacturing technique[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2014, 46(5):675-683
    [5] 阮世勋, 雷运青. 金属超声焊及应用[J]. 新技术新工艺, 2004(12):38-40 Ruan Shixun, Lei Yunqing. Ultrasonic metal weld and its applications[J]. New Technology & New Process, 2004(12):38-40
    [6] 朱政强, 吴宗辉, 范静辉. 超声波金属焊接的研究现状与展望[J]. 焊接技术, 2010, 39(12):1-6 Zhu Zhengqiang, Wu Zonghui, Fan Jinghui. Research status and prospect of ultrasonic metal welding[J]. Welding Technology, 2010, 39(12):1-6
    [7] Sriraman M R, Babu S S, Short M. Bonding characteristics during very high power ultrasonic additive manufacturing of copper[J]. Scripta Materialia, 2010, 62(8):560-563.
    [8] Balasundaram R, Patel V K, Bhole S D, et al. Effect of zinc interlayer on ultrasonic spot welded aluminum-to-copper joints[J]. Materials Science and Engineering:A, 2014, 607:277-286.
    [9] Bakavos D, Prangnell P B. Mechanisms of joint and microstructure formation in high power ultrasonic spot welding 6111 aluminium automotive sheet[J]. Materials Science and Engineering:A, 2010, 527(23):6320-6334.
    [10] Patel V K, Bhole S D, Chen D L. Microstructure and mechanical properties of dissimilar welded Mg-Al joints by ultrasonic spot welding technique[J]. Science and Technology of Welding and Joining, 2012, 17(3):202-206.
    [11] Obielodan J, Stucker B. A fabrication methodology for dual-material engineering structures using ultrasonic additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2014, 70(1-4):277-284.
    [12] Sojiphan K, Babu S S, Benatar A, et al. Effects of ultrasonic power on the hardness of aluminum 3003 H18 alloy[J]. Welding Journal, 2016, 95(6):185-193.
    [13] 张洪涛, 常青, 冯吉才, 等. 辅助加热式超声快速成型方法及装置, CN 103600166 A[P]. 2014-02-26.
  • 期刊类型引用(6)

    1. 周传昆,王伟,娄双涛,陆凯雷. 不锈钢薄板高频冷焊与TIG焊接头的性能对比. 热加工工艺. 2023(07): 122-124+129 . 百度学术
    2. 唐君才,陈和,魏占静. 304不锈钢K-TIG焊接工艺. 机械制造文摘(焊接分册). 2022(03): 37-40 . 百度学术
    3. 何建萍,吴鑫,吉永丰,卢飞. 100 μm超薄不锈钢板脉冲微束等离子弧焊成形机理. 焊接学报. 2021(06): 77-84+101-102 . 本站查看
    4. 高永. 海洋石油平台挡风墙不锈钢薄板焊接专用夹具. 石油工程建设. 2020(01): 75-77 . 百度学术
    5. 王钰,王凯,罗子艺,卢清华,杨景卫. 大功率激光焊接工艺对304不锈钢焊接接头组织和电化学行为的影响. 焊接. 2020(03): 17-23+65-66 . 百度学术
    6. 林晓辉,冷冰,方乃文,徐亦楠,马一鸣. 焊接热输入对节镍不锈钢MAG接头组织性能影响. 金属加工(热加工). 2020(10): 48-52 . 百度学术

    其他类型引用(9)

计量
  • 文章访问数:  363
  • HTML全文浏览量:  8
  • PDF下载量:  19
  • 被引次数: 15
出版历程
  • 收稿日期:  2018-12-28

目录

    /

    返回文章
    返回