高级检索

旁路耦合电弧增材制造热过程与组织关系

余淑荣, 程能弟, 黄健康, 于晓全, 樊丁

余淑荣, 程能弟, 黄健康, 于晓全, 樊丁. 旁路耦合电弧增材制造热过程与组织关系[J]. 焊接学报, 2019, 40(8): 1-6. DOI: 10.12073/j.hjxb.2019400200
引用本文: 余淑荣, 程能弟, 黄健康, 于晓全, 樊丁. 旁路耦合电弧增材制造热过程与组织关系[J]. 焊接学报, 2019, 40(8): 1-6. DOI: 10.12073/j.hjxb.2019400200
YU Shurong, CHENG Nengdi, HUANG Jiankang, YU Xiaoquan, FAN Ding. Relationship between thermal process and microstructure during additive manufacturing of double-electrode gas metal arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 1-6. DOI: 10.12073/j.hjxb.2019400200
Citation: YU Shurong, CHENG Nengdi, HUANG Jiankang, YU Xiaoquan, FAN Ding. Relationship between thermal process and microstructure during additive manufacturing of double-electrode gas metal arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 1-6. DOI: 10.12073/j.hjxb.2019400200

旁路耦合电弧增材制造热过程与组织关系

基金项目: 国家自然科学基金资助项目(51665034)

Relationship between thermal process and microstructure during additive manufacturing of double-electrode gas metal arc welding

  • 摘要: 利用旁路耦合微束等离子弧焊,进行了ER304L不锈钢电弧增材制造的研究.通过进行组织观察和显微硬度测试,并结合增材过程中所测得的热循环曲线,分析了不同旁路电流、堆垛顺序对304不锈钢堆垛样组织和性能的影响.结果表明,旁路耦合微束等离子弧焊增材制造过程中,当旁路电流增大时,堆垛样组织的枝晶间距先减小后增大;堆垛顺序对组织的影响表现为,散热方向的不同导致了枝晶生长方向发生改变.试样的显微硬度沿着堆积高度方向缓慢降低,且随着旁路电流增大,硬度先增大后降低;同时堆垛顺序对硬度的影响并不明显.
    Abstract: Wire arc additive manufacture of ER304L stainless steel was studied using double electrode micro-plasma arc welding. The effect of different bypass current and stacking sequence on the microstructure and properties of 304 stainless steel stacking samples were analyzed by microstructure observation and microhardness test. Combining with the thermal cycle curve measured in the process of additive manufacturing. The results show that when the bypass current is increased, the dendrite arm spacing of the stacking sample decreased firstly and then increased during additive manufacturing of double electrode micro-plasma arc welding. Meanwhile, the effect of stacking sequence on microstructure was that the different direction of heat dissipation leaded to the change of dendrite growth direction. The microhardness decreased slowly along the direction of stack height. And with the increase of the bypass current, the hardness increases firstly and then decreases. The stacking order had no obvious effect on the hardness.
  • [1] Sames W J, List F A, Pannala S, et al. The metallurgy and processing science of metal additive manufacturing[J]. International Materials Reviews, 2016, 61(5):315-360.
    [2] Frazier W E. Metal additive manufacturing:a review[J]. Journal of Materials Engineering and Performance, 2014, 23(6):1917-1928.
    [3] 苗玉刚,曾阳,王腾,等.基于BC-MIG焊的铝/钢异种金属增材制造工艺[J].焊接学报, 2015, 36(7):5-8 Miao Yugang, Zeng Yang, Wang Teng, et al. Additive manufacturing process of aluminum/steel dissimilar metal based on BC-MIG welding[J]. Transactions of the China Welding Institution, 2015, 36(7):5-8
    [4] 陈国庆,树西,张秉刚,等.国内外电子束熔丝沉积增材制造技术发展现状[J].焊接学报, 2018, 39(8):123-128 Chen Guoqing, Shu Xi, Zhang Binggang, et al. State-of-arts of electron beam freeform fabrication technology[J]. Trransactions of the China Welding Institution, 2018, 39(8):123-128
    [5] Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals[J]. Acta Materialia, 2016, 117:371-392.
    [6] Trivedi R, Kurz W. Theory of microstructural development during rapid solidification[J]. Acta Metallurgica, 1986, 34(5):823-830.
    [7] Manvatkar V, De A, Debroy T. Heat transfer and material flow during laser assisted multi-layer additive manufacturing[J]. Journal of Applied Physics, 2014, 116(12):124905.
    [8] Manvatkar V, De A, Debroy T. Spatial variation of melt pool geometry, peak temperature and solidification parameters during laser assisted additive manufacturing process[J]. Materials Science&Technology, 2015, 31(8):924-930.
    [9] Parimi L L, Ravi G A, Clark D, et al. Microstructural and texture development in direct laser fabricated IN718[J]. Materials Characterization, 2014, 89:102-111.
    [10] Dinda G P, Dasgupta A K, Mazumder J. Laser aided direct metal deposition of Inconel 625 superalloy:microstructural evolution and thermal stability[J]. Materials Science and Engineering:A, 2009, 509(1-2):98-104.
    [11] Dinda G P, Dasgupta A K, Mazumder J. Texture control during laser deposition of nickel-based superalloy[J]. Scripta Materialia, 2012, 67(5):503-506.
    [12] 苗玉刚,李春旺,张鹏,等.不锈钢旁路热丝等离子弧增材制造接头特性分析[J].焊接学报, 2018, 39(6):35-38 Miao Yugang, Li Chunwang, Zhang Peng, et al. Joint characteristics of stainless steel bypass-current wireheating PAW on additive manufacturing[J]. Trransactions of the China Welding Institution, 2018, 39(6):35-38
    [13] 黄健康,杨茂鸿,李挺,等.旁路耦合微束等离子弧增材制造[J].上海交通大学学报, 2016, 50(15):1906-1909 Huang Jiankang, Yang Maohong, Li Ting, et al. Additive manufacturing by double electrode micro-plasma arc welding[J]. Journal of Shanghai Jiao Tong University, 2016, 50(15):1906-1909
    [14] Wang L, Wei Y, Zhao W, et al. Effects of welding parameters on microstructures and mechanical properties of disk laser beam welded 2A14-T6 aluminum alloy joint[J]. Journal of Manufacturing Processes, 2018, 31:240-246.
  • 期刊类型引用(9)

    1. 贾剑平,李田雨,詹志平,姜喜铭. Cu对铝/钢CMT熔钎焊接头界面区组织的影响研究. 热加工工艺. 2024(03): 57-61 . 百度学术
    2. 张旭东,方晓明. 白车身激光钎焊检查与返修方法. 汽车工艺与材料. 2021(02): 20-25 . 百度学术
    3. 高恺,刘桂奇,李坤,朱刘博,顾红历. Q235钢与5052铝合金感应-静压焊接头界面微观组织和力学性能. 焊接学报. 2021(11): 35-42+99 . 本站查看
    4. 吴永亮,顾丽霞,罗立峰. Al-Cu合金片对钢/铝异种金属激光-MIG复合焊接头组织和性能的影响. 机械工程材料. 2020(03): 1-7+12 . 百度学术
    5. 李军兆,刘一搏,孙清洁,陶玉洁,张清华,靳鹏,冯吉才. 激光摆动模式对铝/钢焊接接头成形特征及组织、强度的影响. 中国激光. 2020(04): 141-148 . 百度学术
    6. 贾剑平,詹志平. 铝钢熔钎焊工艺及腐蚀性能研究进展. 热加工工艺. 2020(11): 1-5 . 百度学术
    7. 郭柏征,闫德俊,董红刚. 5083铝合金/E36钢熔钎焊接头组织及力学性能. 焊接. 2020(03): 29-34+66 . 百度学术
    8. 李伦坤,高晓龙,刘晶,王小强,刘欢,余浩魁. 铝/钢异种金属熔钎焊技术发展现状. 宝鸡文理学院学报(自然科学版). 2019(03): 49-54 . 百度学术
    9. 张洋,郭玉奇,曹雅彬,齐海波. 铝/钢金属超声波辅助激光熔钎焊组织及性能. 焊接. 2019(09): 14-19+66 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  560
  • HTML全文浏览量:  17
  • PDF下载量:  74
  • 被引次数: 11
出版历程
  • 收稿日期:  2019-02-05

目录

    /

    返回文章
    返回