高级检索

Q235钢与5052铝合金感应-静压焊接头界面微观组织和力学性能

高恺, 刘桂奇, 李坤, 朱刘博, 顾红历

高恺, 刘桂奇, 李坤, 朱刘博, 顾红历. Q235钢与5052铝合金感应-静压焊接头界面微观组织和力学性能[J]. 焊接学报, 2021, 42(11): 35-42. DOI: 10.12073/j.hjxb.20210509001
引用本文: 高恺, 刘桂奇, 李坤, 朱刘博, 顾红历. Q235钢与5052铝合金感应-静压焊接头界面微观组织和力学性能[J]. 焊接学报, 2021, 42(11): 35-42. DOI: 10.12073/j.hjxb.20210509001
GAO Kai, LIU Guiqi, LI Kun, ZHU Liubo, GU Hongli. Microstructure and mechanical performance of induction-pressure welding joints interface between Q235 steel and 5052 aluminium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(11): 35-42. DOI: 10.12073/j.hjxb.20210509001
Citation: GAO Kai, LIU Guiqi, LI Kun, ZHU Liubo, GU Hongli. Microstructure and mechanical performance of induction-pressure welding joints interface between Q235 steel and 5052 aluminium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(11): 35-42. DOI: 10.12073/j.hjxb.20210509001

Q235钢与5052铝合金感应-静压焊接头界面微观组织和力学性能

基金项目: 国家自然科学基金资助项目(51905390)
详细信息
    作者简介:

    高恺,博士,硕士研究生导师;主要研究方向汽车轻量化与智能制造技术; Email: gaokai@wust.edu.cn

  • 中图分类号: TG 456.9

Microstructure and mechanical performance of induction-pressure welding joints interface between Q235 steel and 5052 aluminium alloy

  • 摘要: 为了有效实现车身上的钢/铝复合结构连接,提出了一种新型的焊接与连接技术−感应-静压焊(induction-pressure welding,IPW). 通过光学显微镜、电子扫描显微镜对钢/铝合金连接界面的组织形貌进行观察,通过X射线色散能谱仪、X射线衍射仪及显微硬度计测试了钢/铝连接界面的化学成分、金属间化合物种类以及显微硬度. 结果表明,采用感应-静压焊工艺可以实现Q235钢与5052铝合金的有效连接. 接头界面上1、2号试样的金属间化合物平均厚度分别为115,85 μm. 接头界面的微观组织形貌呈锯齿状,并且组织向钢侧生长. 接头界面组织的硬度明显高于两侧钢铝基体组织的硬度,1,2号试样接头的抗拉强度分别为49,158 MPa. 同时,在整个感应-静压焊工艺过程中,随着加热温度的降低,金属间化合物厚度呈线性减少. 此外,还发现铝原子的扩散能力显著高于铁原子. 故而,在钢/铝感应-静压焊接头界面生成了富铝的金属间化合物Fe2Al5和FeAl2.
    Abstract: In order to realize the efficient connection between steel and aluminum alloy on vehicle body, a novel welding method—induction-pressure welding (IPW) was presented. The chemical compositions, intermetallic compounds, micro-structure and hardness on interface between Q235 steel and 5052 aluminum alloy after IPW process were tested by optical microscope, scanning electron microscopy, X-ray diffraction and microhardness tester. The results showed that the connection between Q235 steel and 5052 aluminum alloy can be realized by IPW process. The thickness of the intermetallic compound of No.1 and No.2 samples is approximately 115 μm and 85 μm, respectively. The morphology of interface microstructure is saw-tooth formation and the tooth tip is pointed towards the steel. The hardness of joints interface microstructure is higher than that of matrix for steel and aluminum alloy. The tensile strength of the No.1 and No.2 samples joint is 49 MPa and 158 MPa, respectively. Meanwhile, the thickness of intermetallic compound decreases linearly with the decrease of heating temperature during IPW process. In addition, the diffusibility of aluminum atom is higher than that of iron atom. The intermetallic compound with aluminum-rich such as Fe2Al5 and FeAl2 will be formed on interface between steel and aluminum alloy during IPW process.
  • 搅拌摩擦焊(friction stir welding, FSW)技术在国内轨道交通车辆铝合金车体制造中已有十余年的应用,最初是为了解决铝合金车体焊接的两类关键问题:一是控制薄板焊接的变形,二是减少厚板焊接的层间缺陷[1-3]. 此外,作为一种绿色焊接技术,FSW还具有操作简单、焊接强度高、一致性好等特点,因而其应用范围也越来越广泛[4-6].

    传统的FSW工艺中,通常不会产生焊缝余高,同时为保证焊接质量,主轴往往会提供较大的下压力,致使搅拌头轴肩被压入工件表面,造成焊缝表面低于母材表面的减薄现象[7]. 此外,在下压力控制不当时,FSW工艺也会产生特有的飞边缺陷[8]. 上述情况不仅会使工件整体精度降低,还会在实际生产中带来较大的焊后打磨量工作,特别是在车体侧墙、端墙等对平面度要求较高的部件焊接时,影响生产效率. 沈浩然等人[9]设计出一种静止轴肩的搅拌头,并应用在铝锂合金的搅拌摩擦焊中,实现了无减薄焊接,但是其并没有解决飞边缺陷等问题. 其他研究工作中,也有学者尝试采用增材焊接的方式来解决焊缝减薄的问题,但这些方法一定程度上增加了生产成本,提高了工艺复杂性[10-11].

    文中针对铝合金型材研究了一种无减薄搅拌摩擦焊的工艺,并对搅拌头的结构进行了适当优化. 结果表明,搅拌头轴肩区域采用内凹设计,能够在保证下压量的基础上,改善焊缝区域的材料流动并使材料回填,最终获得无飞边、无减薄的焊接接头,其力学性能表现良好. 同时,结合工业生产中型材组装存在拼接公差的实际情况,研究了接头错边量对焊缝拉伸强度的影响.

    试验采用挤压成形的中空铝合金型材,其材质为6005A-T6,材料成分和力学性能分别执行EN 573-3[12]和EN 755-2[13]标准,抗拉强度为260 MPa. 接头采用对搭接形式,厚度为4 mm,焊接试样长度为800 mm(其中有效焊接长度600 mm),断面尺寸如图1所示,焊接方向平行于挤压方向.

    图  1  铝合金型材的横截面
    Figure  1.  Cross section of aluminum alloy profile

    焊接过程中采用恒位移控制模式,主轴转速和焊接速度分别为950 r/min和300 mm/min. 试验所用搅拌头轴肩直径24 mm,内凹角深度1 mm,锥形搅拌针根部直径为8 mm,针长为5.3 mm,侧面加工有右旋锥螺纹,焊接过程中倾角为2.5°.

    依据国家标准《GB/T 2651-2008焊接接头拉伸试验方法》[14],从垂直于焊缝方向的接头取拉伸试样,同时考虑到型材各处厚度不均匀的结构特点,以最薄处为厚度基准制备标准试样,用于考察型材FSW结构的拉伸性能,引伸计标距定为50 mm. 为考察接头各区显微硬度的分布特征,沿垂直于焊接方向截取接头横截面制备测试试样,经SiC砂纸粗磨、金相砂纸精磨和机械抛光后,对距离焊缝上表面2 mm处各点进行维氏硬度测试.

    试验中将轴向下压量作为变量,以搅拌针针长为基准,将其设定为5.3 ~ 5.7 mm. 图2图3为不同下压量条件下所得高速FSW接头的表面和截面的宏观形貌.

    图  2  焊缝表面形貌
    Figure  2.  Surface morphology of welded joints. (a) press amount 5.3 mm; (b) press amount 5.4 mm; (c) press amount 5.5 mm; (d) press amount 5.6 mm; (e) press amount 5.7 mm
    图  3  焊缝截面形貌
    Figure  3.  Section morphology of welded joints. (a) press amount 5.3 mm; (b) press amount 5.4 mm; (c) press amount 5.5 mm; (d) press amount 5.6 mm; (e) press amount 5.7 mm

    当下压量为5.3 mm时,可以明显看到焊缝中部存在未焊合情况,此时与搅拌针针长相当,由于搅拌头轴肩内凹设计,轴肩与工件表面没有充分摩擦,因此焊缝成形质量较差. 当下压量为5.4 mm时,接头整体呈现焊合状态,但中间存在气孔缺陷,且焊缝前进侧存在较小尺寸的飞边结构,推测其成因是由于轴肩下压仍然不充分,材料高温状态下软化后与轴肩之间存在缝隙,部分材料在搅拌头旋转作用下被带出,形成飞边缺陷. 当下压量为5.5 mm和5.6 mm时,焊缝成形质量较好,达到无需后道打磨工序的状态,两者相比下压量为5.5 mm更优. 当下压量增大到5.7 mm时,焊缝表面和母材表面存在明显高度差,即发生了接头厚度减薄,表明此时搅拌头下压量过大.

    选取下压量为5.5 mm状态下的焊接接头,观测其微观组织形貌,如图4所示. 接头组织呈现出典型搅拌摩擦焊焊缝特征,由焊核区(NZ)、热力影响区(TMAZ)和热影响区(HAZ)三个区域组成,前进侧和后推侧存在不对称的TMAZ和HAZ. 焊缝中心受搅拌头直接作用的NZ呈盆状,上半部分较宽,主要受到轴肩的旋转带动作用;中、下部分较窄,主要受到搅拌针的直接搅拌作用.

    图  4  焊缝组织微观形貌
    Figure  4.  Microstructure of welded joint. (a) the overall microstructure of the joint; (b) base metal; (c) weld-nugget zone; (d) heat-affected zone; (e) thermo-mechanically affected zone

    图4b ~ 4e反映了采用基准工艺参数所得接头的各区晶粒形态. 可以看出,NZ在剧烈塑性变形和高焊接热输入的联合作用下,发生了动态再结晶,形成了细小的等轴晶粒. HAZ没有发生塑性变形,只经历了较低的焊接热输入,晶粒形态与母材相似,只是晶粒发生了一定程度的粗化. TMAZ未受到搅拌头的直接搅拌作用,但在NZ塑性金属粘滞力的带动下发生了拉长弯曲变形,与NZ组织形态差异较大,两者间出现分界面,这是由两侧塑性材料的流动差异造成的.

    选取下压量5.5 mm标准接头制得的拉伸试样,测定其拉伸曲线如图5所示,表现为无明显屈服平台的塑性材料特征,其抗拉强度和屈服强度分别为196.5 MPa和111.0 MPa,根据EN 755-2[13]标准,达到了母材的75%.

    图  5  焊接接头拉伸曲线
    Figure  5.  Tensile curve of welded joint

    改变下压量,分别测得焊接接头抗拉强度和屈服强度,如图6所示. 当下压量为5.3 mm时,根据前述结果,焊缝中部存在未焊合情况,因此其抗拉强度和屈服强度均较低. 当下压量为5.4 ~ 5.7 mm时,抗拉强度和屈服强度无明显变化趋势,表明搅拌摩擦焊工艺良好的稳定性.

    图  6  焊缝抗拉强度和屈服强度
    Figure  6.  Tensile strength and yield strength of welded joints

    无缺陷焊接接头的力学性能取决于显微硬度分布,显微硬度是接头各区强化程度的宏观反映,而可热处理强化铝合金搅拌摩擦焊接头各区的强化机制可能包括固溶强化、沉淀强化、位错强化和细晶强化等.

    不同下压量条件下未经热处理的焊接接头显微硬度分布如图7所示,其中各接头的软化区宽度基本相同,NZ和TMAZ的显微硬度变化不显著,焊缝两侧硬度极小值均出现在HAZ,且数值非常接近,这与传统搅拌摩擦焊接头的硬度值空间分布一致[15]. 随着下压量的增大,软化区宽度出现轻微增加的情况,最小硬度值对应的位置向外偏移,NZ的显微硬度在下压量为5.6 mm时达到极小值. 总的来看,焊核区硬度约为60 HV,较母材下降25 ~ 30 HV.

    图  7  焊缝显微硬度
    Figure  7.  Microhardness of welded joints

    与熔化焊相比,FSW对工装要求较高. 一方面是由于FSW实施过程中,工件要承受较大的轴向下压力和径向扭转载荷;另一方面,需要保证型材之间良好的接触配合,以保证材料在搅拌头作用下顺利流动. 对于车体双层中空型材,由于其采用铝合金挤压工艺,除了本身断面上的制造误差,长度方向上的扭拧等都会影响装配精度.

    为了检验型材接头拼接公差对焊缝力学性能的影响,在焊缝中心一侧的工件表面进行机加工,从而以人为的方式预置错边量,加工宽度大于静轴肩半径. 在这里定义接头错边量Δt,Δt > 0表示前进侧表面比后退侧高,Δt < 0表示前进侧表面比后退侧低. 试验中搅拌头下压量为5.5 mm(以未进行机加工的较高一侧上表面为基准).

    图8为不同接头错边量条件下所得高速FSW接头的表面形貌. 当前进侧表面比后退侧高时,此时在搅拌头和轴肩作用下,部分金属在轴肩和后退侧之间的缝隙被压出,压出后不再参与塑性层的流动,因而会在后退侧产生形成飞边缺陷的趋势. 特别是缝隙较大时,如图8b所示,形成明显的飞边缺陷. 当前进侧表面比后退侧低时,此时在搅拌头和轴肩作用下,部分金属同样在轴肩和后退侧之间的缝隙被压出,压出后仍然会参与塑性层的流动. 然而,由于此时前进侧温度较低,特别是当温度差异较大时,被压出的金属一部分接触前进侧表面预冷凝固,从而造成流动性变差,影响焊缝成形质量,如图8d所示.

    图  8  焊缝表面形貌
    Figure  8.  Surface morphology of welded joints. (a) Δt = 0.5 mm; (b) Δt = 1 mm; (c) Δt = −0.5 mm; (d) Δt = −1 mm

    分别测得不同接头错边量条件下所得焊接接头抗拉强度和屈服强度,如图9所示. 当错边量Δt绝对值小于0.5 mm时,其抗拉强度和屈服强度下降范围可控制在10%以内. 当错边量Δt绝对值大于0.5 mm时,其抗拉强度和屈服强度下降显著. 因此,型材在焊接过程中应尽可能将装配错边量控制在0.5mm以内.

    图  9  不同错边量状态下焊缝抗拉强度和屈服强度
    Figure  9.  Tensile strength and yield strength of welded joints under different tolerances

    (1)研究中采用轴肩内凹设计的搅拌头,无需其他特殊工艺,即可获得无减薄的型材FSW接头,且下压量5.5 mm时焊缝成形质量最好;

    (2)无减薄工艺条件下,所得FSW接头抗拉强度为196.5 MPa,达到母材的75%,且在下压量5.4 ~ 5.7 mm时保持了较好的一致性;

    (3)无减薄工艺条件下,铝合金型材接头拼接公差在±0.5 mm以内时,接头强度下降可控制在10%以内.

  • 图  2   感应-静压焊工艺试验系统原理

    Figure  2.   Schematic diagram of experimental system for IPW process

    图  1   基体材料的初始微观组织形貌

    Figure  1.   Initial microstructures before IPW process. (a) 5052 aluminum alloy; (b) Q235 steel

    图  3   感应-静压焊工艺的取样示意图(mm)

    Figure  3.   Detailed parameters during IPW process

    图  4   感应-静压焊接后钢/铝界面连接形貌

    Figure  4.   Interface morphology of steel/aluminum after IPW process. (a) No.1; (b) No.2; (c) No.3

    图  5   钢/铝感应-静压焊接头界面的扫描电镜照片

    Figure  5.   Scanning electron microscope images of the two samples on interface between steel and aluminum alloy after IPW process. (a) No.1; (b) No.2; (c) shrinkage cavity in No.1

    图  6   感应-静压焊接接头的能谱仪测试点分布

    Figure  6.   Energy dispersive spectrum point distribution of IPW welded joints. (a) No.1; (b) No.2

    图  7   感应-静压焊接头的能谱仪点扫描结果

    Figure  7.   Energy dispersive spectrum point scanning results of IPW welded joints. (a) No.1; (b) No.2

    图  8   钢铝感应-静压焊接接头的EDS线扫描结果

    Figure  8.   Energy dispersive spectrum line scanning of IPW welded joints. (a) scanning position of No.1;(b) scanning position of No.2;(c) scanning result of No.1;(d) scanning result of No.2

    图  9   焊接试样的X射线衍射图谱

    Figure  9.   X-ray diffraction pattern of welding samples after IPW process. (a) steel; (b) aluminum alloy ; (c) No.1; (d) No.2

    图  10   感应-静压焊界面的硬度分布

    Figure  10.   Interface hardness distribution after IPW process. (a) test path of No.1; (b) hardness distribution of No.1; (c) test path of No.2; (d) hardness distribution of No.2

    图  11   接头的应力-应变曲线

    Figure  11.   Stress-strain curve of the joint

    图  12   接头的温度-金属化合物厚度曲线

    Figure  12.   Temperature-metal compound thickness curve of the join

    表  1   基体材料主要化学成分(质量分数,%)

    Table  1   Chemical compositions of Q235 steel and 5052 aluminum alloy

    材料MgCrCuMnTiSiZnCAlFe
    Q235 0.70 0.10 0.44 0.16 0.10 0.10 余量
    5052 2.22 0.22 0.01 0.01 0.03 0.08 0.01 余量 0.20
    下载: 导出CSV

    表  2   感应-静压焊过程的具体工艺参数

    Table  2   Detailed parameters during IPW process

    电源功率
    P/kW
    频率
    f/kHz
    空气间隙
    G/mm
    加热时间
    t/mm
    静压力
    F/N
    503044200
    下载: 导出CSV
  • [1]

    Palazzo J, Geyer R. Consequential life cycle assessment of automotive material substitution: replacing steel with aluminum in production of north American vehicles[J]. Environmental Impact Assessment Review, 2019, 75: 47 − 58. doi: 10.1016/j.eiar.2018.12.001

    [2]

    Piccini J M, Svoboda H G. Tool geometry optimization in friction stir spot welding of Al-steel joints[J]. Journal of Manufacturing Processes, 2017, 26: 142 − 154. doi: 10.1016/j.jmapro.2017.02.004

    [3]

    Shi L T, Kang J D, Gesing M, et al. Fatigue life assessment of Al-steel resistance spot welds using the maximum principal strain approach considering material in homogeneity[J]. International Journal of Fatigue, 2020, 140: 105851. doi: 10.1016/j.ijfatigue.2020.105851

    [4]

    Yang S L, Zhang J, Lian J, et al. Welding of aluminum alloy to zinc coated steel by cold metal transfer[J]. Materials and Design, 2013, 49: 602 − 612. doi: 10.1016/j.matdes.2013.01.045

    [5]

    Lee J H, Kim J D, Oh J S, et al. Effect of Al coating conditions on laser weld ability of Al coated steel sheet[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(4): 946 − 951. doi: 10.1016/S1003-6326(08)60383-0

    [6]

    Pujari K S, Patil D V, Mewundi G. Selection of GTAW process parameter and optimizing the weld pool geometry for AA7075-T6 Aluminium alloy[J]. Materials Today:Proceedings, 2018, 5(11): 25045 − 25055. doi: 10.1016/j.matpr.2018.10.305

    [7]

    Babu S, Panigrahi S K, Ram G D J, et al. Cold metal transfer welding of aluminium alloy AA2219 to austenitic stainless steel AISI 321[J]. Journal of Materials Processing Technology, 2019, 266: 155 − 164. doi: 10.1016/j.jmatprotec.2018.10.034

    [8]

    Yuan R, Deng S J, Cui H C, et al. Interface characterization and mechanical properties of dual beam laser welding-brazing Al/steel dissimilar metals[J]. Journal of Manufacturing Processes, 2019, 40: 37 − 45. doi: 10.1016/j.jmapro.2019.03.005

    [9]

    Gao K, Qin X P, Wang Z, et al. Numerical and experimental analysis of 3D spot induction hardening of AISI1045 steel[J]. Journal of Materials Processing Technology, 2014, 214(11): 2425 − 2433. doi: 10.1016/j.jmatprotec.2014.05.010

    [10] 黄健康,李杰,沈利民,等. Si,Mg对铝/钢熔钎焊焊接接头力学性能的影响[J]. 焊接学报, 2016, 37(8): 96 − 100.

    Huang Jiankang,Li Jie,Shen Limin,et al. Effects of Si and Mg on mechanical properties of aluminum-steel welded-brazed joint[J]. Transactions of the China Welding Institution, 2016, 37(8): 96 − 100.

    [11] 秦优琼,焦国力. 采用AlSi5焊丝CMT熔钎焊7075铝合金/镀锌钢板接头组织及性能分析[J]. 焊接学报, 2019, 38(9): 119 − 123.

    Qin Youqiong,Jiao Gouli. Microstructure and mechanical property of CMT fusion-brazed joint with AlSi5 filler wire between 7075 aluminum alloy and galvanized steel sheets[J]. Transactions of the China Welding Institution, 2019, 38(9): 119 − 123.

    [12] 崔凌越,米高阳,胡席远,等. 基于CuSi3焊丝的激光熔钎焊钢/铝异种金属工艺分析[J]. 焊接学报, 2018, 39(9): 6 − 12.

    Cui Lingyue, Mi Gaoyang, Hu Xiyuan, et al. Microstructure and mechanical properties of laser welding-brazed aluminum alloy to steel with CuSi3 filler metal[J]. Transactions of the China Welding Institution, 2018, 39(9): 6 − 12.

    [13] 李剑雄,李桓,韦辉亮,等. 基于U-I图的铝/钢双脉冲MIG熔-钎焊稳定性评价及其MATLAB实现[J]. 焊接学报, 2017, 38(2): 87 − 91.

    Li Jianxiong, Li Huan, Wei Huiliang, et al. Evaluation of welding stability of double pulse MIG welding-brazing of aluminum to steel based on U-I graph and its realization in MATLAB[J]. Transactions of the China Welding Institution, 2017, 38(2): 87 − 91.

    [14] 刘宁,黄健康,陈满骄,等. 基于蒙特卡罗方法的铝/钢熔钎焊界面金属间化合物层生长分析[J]. 焊接学报, 2016, 37(2): 55 − 58, 62.

    Liu Ning, Huang Jiankang, Chen Manjiao, et al. Growth analysis of intermetallic compounds on aluminum-steel MIG-brazing interface based on Monte Carlo method[J]. Transactions of the China Welding Institution, 2016, 37(2): 55 − 58, 62.

    [15]

    Li L Q, Xia H B, Tan C, et al. Influence of laserpower on interfacial microstructure and mechanical properties of laser welded-brazed Al/steel dissimilar butted joint[J]. Journal of Manufacturing Processes, 2018, 32: 160 − 174. doi: 10.1016/j.jmapro.2018.02.002

    [16]

    Chen S H, Li S Q, Li Y, et al. Butt welding-brazing of steel to aluminum by hybrid laser-CMT[J]. Journal of Materials Processing Technology, 2019, 272: 163 − 169. doi: 10.1016/j.jmatprotec.2019.05.018

    [17]

    Zhou Y L, Lin Q L. Wetting of galvanized steel by Al 4043 alloys in the first cycle of CMT process[J]. Journal of Alloys and Compounds, 2014, 589: 307 − 313. doi: 10.1016/j.jallcom.2013.11.177

    [18]

    Pouranvari M, Abbasi M. Dissimilar gas tungsten arc weld-brazing of Al/steel using Al-Si filler metal: Microstructure and strengthening mechanisms[J]. Journal of Alloys and Compounds, 2018, 749: 121 − 127. doi: 10.1016/j.jallcom.2018.03.224

    [19]

    Zienert T, Leineweber A, Fabrichnaya O. Heat capacity of Fe-Al intermetallics: B2-FeAl、FeAl2、Fe2Al5 and Fe4Al13[J]. Journal of Alloys and Compounds, 2017, 725: 848 − 859. doi: 10.1016/j.jallcom.2017.07.199

    [20]

    Cao R, Yu G, Chen J H, et al. Cold metal transfer joining aluminum alloys-to-galvanized mild steel[J]. Journal of Materials Processing Technology, 2013, 213(10): 1753 − 1763. doi: 10.1016/j.jmatprotec.2013.04.004

    [21]

    Xia H B, Zhao X Y, Tan C W, et al. Effect of Si content on the interfacial reactions in laser welded-brazed Al/steel dissimilar butted joint[J]. Journal of Materials Processing Technology, 2018, 258: 9 − 21. doi: 10.1016/j.jmatprotec.2018.03.010

    [22]

    Tricarico L, Spina R, Sorgente D, et al. Effects of heat treatments on mechanical properties of Fe/Al explosion-welded structural transition joints[J]. Materials and Design, 2009, 30: 2693 − 2700. doi: 10.1016/j.matdes.2008.10.010

    [23]

    Huang Y X, Wan L, Si X Q, et al. Achieving high-quality Al/steel joint with ultrastrong interface[J]. Metallurgical and Materials Transactions, 2019, 50(1): 295 − 299. doi: 10.1007/s11661-018-5006-4

  • 期刊类型引用(0)

    其他类型引用(1)

图(12)  /  表(2)
计量
  • 文章访问数:  399
  • HTML全文浏览量:  61
  • PDF下载量:  34
  • 被引次数: 1
出版历程
  • 收稿日期:  2021-05-08
  • 网络出版日期:  2021-12-30
  • 刊出日期:  2021-11-24

目录

/

返回文章
返回