Effects of C-MoS2-Fe2O3(Fe3O4) nano-lubricants on contact tip wear for non-copper coated solid wires
-
摘要: 针对无镀铜实心焊丝在机器人自动焊接时导电嘴磨损问题,采用机械涂敷法在无镀铜实心焊丝表面制备了C-MoS2-Fe2O3(Fe3O4)纳米复合润滑剂,研究了润滑剂配比对导电嘴磨损性能的影响. 结果表明,C-Fe3O4涂层的润滑性能优于C-Fe2O3涂层的润滑性能,随着涂层中纳米MoS2含量的升高,导电嘴的抗磨性能增强. 纳米复合润滑剂在焊丝与导电嘴的摩擦界面发生摩擦化学反应形成了保护性的自修复膜,此膜主要由润滑性能优异的FeO,MoS2,MoO3组成,避免了焊丝与导电嘴内表面的直接接触,从而减少了导电嘴的磨损. 氧化磨损、磨粒磨损和电弧烧蚀是导电嘴磨损的主要机制.Abstract: Aiming at the application of contact tip wear of non-copper coated solid wires in robot auto-welding, C-MoS2-Fe2O3(Fe3O4) nano-composite lubricants were prepared on the surfaces of non-copper coated solid wires by a mechanical coating technique. The effects of C-MoS2-Fe2O3(Fe3O4) lubricants proportion on the contact tip wear were investigated. The results demonstrate that lubricating property of C-Fe3O4 coatings outperformed lubricating property of C-Fe2O3 coatings. The anti-wear performance of the contact tip was enhanced with an addition of nano-MoS2. The formation of protective self-repairing films at the rubbing interface of welding wires against the contact tip was attributed to the tribochemical reaction among lubricants. The tribofilm composition were FeO, MoS2 and MoO3 which lubricating properties are excellent. They can avoid direct contact of welding wires against the contact tip, thus the contact tip wear was inereasdel. Oxidative wear, abrasive wear and arc ablation were the primary mechanisms of the contact tip wear.
-
-
[1] Li Zhuoxin, Wan Qian, Zhang Tianli, et al. Progress in effect of nano-modified coatings and welding process parameters on wear of contact tube for non-copper coated solid wires[J]. Journal of Materials Engineering, 2017, 45(12): 135 − 146
[2] Han J H, Lee J S, Kim S H, et al. A study on the improvement of a contact tip for the wire melting rate enhancement[J]. Welding in the World, 2017, 61(6): 1181 − 1187.
[3] Li Zhuoxin, Cao Xiaotao, Wolfgang Tillmann. Progress of nano-materials in non-copper coated solid wires[J]. Journal of Beijing University of Technology, 2017, 43(10): 1582 − 1589
[4] Zhang H W, Su J H, Chen J. Status and development trend of the welding consumables industry in China[J]. China Welding, 2017, 26(2): 23 − 31.
[5] Scharf T W, Prasad S V. Solid lubricants: a review[J]. Journal of Materials Science, 2013, 48(2): 511 − 531.
[6] Zhou Y, Wang S Q, Huang K Z, et al. Improvement of tribological performance of TC11 alloy via formation of a double-layer tribo-layer containing graphene/Fe2O3 nanocomposite[J]. Tribology International, 2017, 109(1): 485 − 495.
[7] Ji Y Y, Bao J S, Tuttle M E, et al. Influence of magnetic powders on the tribological performance of a novel magnetic brake material[J]. Composite Interfaces, 2017, 24(4): 399 − 415.
[8] 曹晓涛. 表面处理对无镀铜焊丝导电嘴磨损及抗锈性影响的研究[D]. 北京: 北京工业大学, 2017. [9] 栗卓新, 万 千, 张天理, 等. 纳米改性涂层及焊接工艺参数对无镀铜实心焊丝导电嘴磨损影响的研究进展[J]. 材料工程, 2017, 45(12): 135 − 146 [10] 栗卓新, 曹晓涛, Wolfgang Tillmann. 纳米材料在无镀铜焊丝中的研究现状[J]. 北京工业大学学报, 2017, 43(10): 1582 − 1589 [11] Dai W, Kheireddin B, Gao H, et al. Roles of nanoparticles in oil lubrication[J]. Tribology International, 2016, 102(5): 88 − 98.
[12] Shimizu H, Yokota Y, Mizuno M, et al. Wear mechanism in contact tube[J]. Science and Technology of Welding and Joining, 2006, 11(1): 94 − 105.
[13] Hernandez S, Hardell J, Courbon C, et al. High temperature friction and wear mechanism map for tool steel and boron steel tribopair[J]. Tribology - Materials, Surfaces & Interfaces, 2014, 8(2): 74 − 84.
[14] Aouadi S M, Gao H, Martini A, et al. Lubricious oxide coatings for extreme temperature applications: A review[J]. Surface & Coating Technology, 2014, 257(5): 266 − 277.
[15] Zhou H, Zhang Y P, Hua X H, et al. Al2O3/Mo composite and its tribological behavior against AISI201 stainless steel at elevated temperatures[J]. International Journal of Refractory Metals and Hard Materials, 2014, 43(12): 263 − 268.
[16] Xie G X, Guo D, Luo J B. Lubrication under charged condi-tions[J]. Tribology International, 2015, 84(11): 22 − 35.
-
期刊类型引用(20)
1. 李碧晗,王亦奇,汪瑞军. 微弧离子沉积技术研究现状与应用进展. 焊接. 2025(02): 55-65 . 百度学术
2. 王明伟,高磊,郭昊亮,张文超. 纳米碳化钨涂层电火花沉积工艺参数试验研究. 热加工工艺. 2024(18): 74-78 . 百度学术
3. 李梦楠,韩红彪,李世康,侯玉杰. 旋转电极接触力对电火花沉积放电过程参数和材料转移的影响. 焊接学报. 2023(01): 71-77+132-133 . 本站查看
4. 李忠盛,吴护林,陈海涛,丛大龙,张敏,何庆兵,彭冬. 钢表面电火花沉积合成W-Mo高熔点复合涂层. 表面技术. 2023(10): 250-258 . 百度学术
5. 张孟卓,姚利松,何星. 电火花沉积在金属耐磨防腐领域的应用研究进展. 材料保护. 2023(11): 102-117 . 百度学术
6. 王彦芳,潘辰妍,石志强,何艳玲,韩彬. 块体高熵非晶合金的制备与表征综合实验教学探索与实践. 实验技术与管理. 2022(04): 142-146 . 百度学术
7. 郝丽敏,葛志宏,都宇. 内圆表面的电火花合金化强化修复装置研究. 现代制造工程. 2022(06): 63-67+84 . 百度学术
8. 何艳玲,王彦芳,斯佳佳,石志强. 电火花沉积Invar/非晶复合涂层的组织与性能. 金属热处理. 2022(11): 238-244 . 百度学术
9. 田芳,纪秀林,严春妍,赵建华. 循环气压结合超声辅助封孔剂封孔处理对铁基非晶合金涂层摩擦磨损性能的影响. 腐蚀与防护. 2022(11): 1-6+53 . 百度学术
10. 张勇,李丽,常青,王晓明,赵阳,朱胜,徐安阳,高宪伟. 电火花沉积技术研究现状与展望. 表面技术. 2021(01): 150-161 . 百度学术
11. 高继文,李永彬,黄晓望. 超声波冲击法对微弧火花沉积涂层性能的影响. 焊接. 2021(02): 52-56+64 . 百度学术
12. 王顺,童金钟,韩红彪. 一种电火花沉积接触力自动控制装置和沉积试验. 焊接学报. 2021(03): 42-47+100 . 本站查看
13. 王顺,韩红彪,李世康,李梦楠. 基于正交试验的圆柱电极参数对电火花沉积质量影响分析. 焊接学报. 2021(07): 37-43+100 . 本站查看
14. 刘宇,刘国良,苏全宁,曲嘉伟,王紫光,张生芳. 钛合金表面电火花沉积NiCr-3涂层性能的工艺规律研究. 电加工与模具. 2021(06): 26-30 . 百度学术
15. 赵航,高畅,伍晓宇,徐斌,雷建国. 超声辅助电火花粉末沉积WC-Ni金属陶瓷涂层的微观结构及摩擦学性能. 机械工程学报. 2021(23): 252-261 . 百度学术
16. 张建斌,张雷雷,刘航,容煜,焦凯,石玗. 电火花沉积修复铝合金组织与可降解性能. 表面技术. 2020(10): 224-232 . 百度学术
17. 葛志宏,邓静. 用于回转体外表面的电火花强化修复装置研究. 电加工与模具. 2020(06): 29-31+47 . 百度学术
18. 王彦芳,闫晗,李娟,孙胜越,宋增金,石志强. 电火花沉积FeCoCrNiCu高熵合金涂层的组织结构与耐蚀性. 表面技术. 2019(06): 144-149 . 百度学术
19. 马焰议,王海燕,张宇鹏,易耀勇,董福宇. Zr_(67.8)Cu_(24.7)Al_(3.43)Ni_(4.07)非晶合金激光焊接晶化控制及组织性能分析. 焊接学报. 2019(12): 138-142+167 . 本站查看
20. 钟鹏,司爽爽,宋增金,孙旭,石志强,王彦芳. 工艺参数对电火花沉积非晶层表面质量的影响. 热加工工艺. 2018(18): 125-128 . 百度学术
其他类型引用(10)
计量
- 文章访问数: 119
- HTML全文浏览量: 1
- PDF下载量: 4
- 被引次数: 30