高级检索

旋转电极接触力对电火花沉积放电过程参数和材料转移的影响

李梦楠, 韩红彪, 李世康, 侯玉杰

李梦楠, 韩红彪, 李世康, 侯玉杰. 旋转电极接触力对电火花沉积放电过程参数和材料转移的影响[J]. 焊接学报, 2023, 44(1): 71-77. DOI: 10.12073/j.hjxb.20220206001
引用本文: 李梦楠, 韩红彪, 李世康, 侯玉杰. 旋转电极接触力对电火花沉积放电过程参数和材料转移的影响[J]. 焊接学报, 2023, 44(1): 71-77. DOI: 10.12073/j.hjxb.20220206001
LI Mengnan, HAN Hongbiao, LI Shikang, HOU Yujie. Effect of rotating electrode contact force on discharge parameters and material transfer in electric-spark deposition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 71-77. DOI: 10.12073/j.hjxb.20220206001
Citation: LI Mengnan, HAN Hongbiao, LI Shikang, HOU Yujie. Effect of rotating electrode contact force on discharge parameters and material transfer in electric-spark deposition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 71-77. DOI: 10.12073/j.hjxb.20220206001

旋转电极接触力对电火花沉积放电过程参数和材料转移的影响

基金项目: 国家自然科学基金资助项目(51375146);国家智能制造综合标准化项目(2018ZNZX01-02);河南省高等学校重点科研项目(17A460012)
详细信息
    作者简介:

    李梦楠,1995年出生,硕士生. 主要从事电火花沉积及表面工程的研究工作. Email: lylmn518@163.com

    通讯作者:

    韩红彪,1971年出生,博士,教授,博士研究生导师;主要从事电火花表面沉积和金属增材制造方面的科研和教学工作,发表论文60余篇;Email: lyhhb7157@163.com.

  • 中图分类号: TG 456.9

Effect of rotating electrode contact force on discharge parameters and material transfer in electric-spark deposition

  • 摘要: 为了研究旋转电极接触力对电火花沉积放电过程参数和材料转移的影响,进行了不同接触力下的电火花自动沉积试验. 分析了不同接触力下的各种放电波形的数量、放电脉冲的平均电压和电流等放电参数、电火花沉积的转移效率和沉积效率、沉积层的表面形貌和截面形貌、表面粗糙度等. 结果表明,接触力的变化影响了旋转电极电火花自动沉积过程中各种放电类型的数量和比例. 随着接触力的增大,接触放电比例逐渐减少而短路放电比例逐渐增加,放电脉冲的平均电压和平均功率逐渐下降而平均电流逐渐上升. 接触力对电火花沉积的转移效率和沉积效率影响较大,对表面粗糙度影响不大. 接触力为1 ~ 2 N时,自动沉积过程中的接触放电比例较高,转移效率和沉积效率也较高. 在旋转电极电火花自动沉积过程,接触放电引起的材料转移量明显高于短路放电引起的材料转移量.
    Abstract:
    In order to study the effect of rotating electrode contact force on discharge parameters and material transfer in electric-spark deposition (ESD), the automatic ESD experiments under different contact forces were carried out. The number of various discharge waveforms, discharge parameters such as average voltage and current of discharge pulses, transfer efficiency and deposition efficiency of ESD, surface morphology and cross-section morphology and surface roughness of the deposition layer under different contact forces were analyzed. The results show that the change of contact force affects the number and proportion of various discharge types during the automatic ESD process with rotating electrode. With the increase of contact force, the proportion of contact discharge decreases gradually while the proportion of short-circuit discharge increases gradually, and the average voltage and average power of discharge pulse decrease gradually while the average current increases gradually. The contact force has a great effect on the transfer efficiency and deposition efficiency of ESD, but has little influence on surface roughness. When the contact force is 1 − 2 N, the proportion of contact discharge, transfer efficiency and deposition efficiency are higher in the automatic deposition process. The amount of material transfer caused by contact discharge is significantly higher than that caused by short-circuit discharge during the automatic ESD process with rotating electrode.
  • 图  1   电火花自动沉积系统的工作原理

    Figure  1.   Principle of ESD automatic system

    图  2   电极与工件的相对位置和相对运动轨迹

    Figure  2.   Relative position and relative motion track of electrode and workpiece

    图  3   转移效率和沉积效率随接触力的变化曲线

    Figure  3.   Variation curves of transfer efficiency and deposition efficiency with contact force

    图  4   不同接触力时沉积层的表面形貌和截面形貌

    Figure  4.   Surface and cross-sectional morphology of deposited layer under different contact forces. (a) surface morphology of F = 0.5 N; (b) surface morphology of F = 2 N; (c) surface morphology of F = 5 N; (d) cross-sectional morphology of F = 0.5 N; (e) cross-sectional morphology of F = 2 N; (f) cross-sectional morphology of F = 5 N

    图  5   沉积层的平均厚度和表面粗糙度随接触力的变化曲线

    Figure  5.   Variation curves of average thickness and surface roughness of deposited layer with contact force

    图  6   放电脉冲平均电压和平均电流随接触力的变化趋势

    Figure  6.   Variation trend of average voltage and current of discharge pulse with contact force

    图  7   放电脉冲平均功率随接触力的变化趋势

    Figure  7.   Variation trend of discharge pulse average power with contact force

    图  8   工件增加量随接触放电比例的变化趋势

    Figure  8.   Variation trend of workpiece increment with contact discharge ratio

    表  1   不同接触力下各种放电波形的数量

    Table  1   Quantity of various discharge waveforms under different contact forces

    接触力F/N短路放电
    数量N1/个
    接触放电
    数量N2/个
    间隙放电
    数量N3/个
    空载数量N4/个合计放电
    数量N5/个
    0.51491238100
    1146615499
    1.5255551297
    238533397
    364294299
    477190096
    585102097
    下载: 导出CSV
  • [1] 王彦芳, 司爽爽, 宋增金, 等. 电火花沉积非晶涂层的组织结构与摩擦磨损性能[J]. 焊接学报, 2018, 39(7): 121 − 124. doi: 10.12073/j.hjxb.2018390188

    Wang Yanfang, Si Shuangshuang, Song Zengjin, et al. Microstructure and tribology behaviors of Zr-based amorphous coating onZL101 by electro-spark deposition[J]. Transactions of the China Welding Institution, 2018, 39(7): 121 − 124. doi: 10.12073/j.hjxb.2018390188

    [2] 王 顺, 韩红彪, 李世康, 等. 基于正交试验的圆柱电极参数对电火花沉积质量影响分析[J]. 焊接学报, 2021, 42(7): 37 − 43. doi: 10.12073/j.hjxb.20210131002

    Wang Shun, Han Hongbiao, Li Shikang, et al. Analysis of the influence of cylindrical electrode parameters on electro-spark deposition quality based on orthogonal experiment[J]. Transactions of the China Welding Institution, 2021, 42(7): 37 − 43. doi: 10.12073/j.hjxb.20210131002

    [3] 梁怀南, 刘志奇, 林乃明, 等. 电火花沉积技术及其表面性能的研究进展[J]. 热加工工艺, 2021, 50(12): 1 − 7.

    Liang Huainan, Liu Zhiqi, Lin Naiming, et al. Research Progress of Electrospark Deposition Technology and Its Surface Properties[J]. Hot Working Technology, 2021, 50(12): 1 − 7.

    [4] 张勇, 李丽, 常青, 等. 电火花沉积技术研究现状与展望[J]. 表面技术, 2021, 50(1): 150 − 161. doi: 10.16490/j.cnki.issn.1001-3660.2021.01.012

    Zhang Yong, Li Li, Chang Qing, et al. Research status and prospect of electro-spark deposition technology[J]. Surface Technology, 2021, 50(1): 150 − 161. doi: 10.16490/j.cnki.issn.1001-3660.2021.01.012

    [5] 韩超. 电火花沉积涂层典型缺陷的形成机理与工艺控制研究[D]. 浙江: 浙江工业大学, 2020.

    Han Chao. Formation mechanism and process control of typical defects in electrospark deposition coatings[D]. Zhejiang: Zhejiang University of Technology, 2020.

    [6] 栾程群, 王文权, 邝厘祥. H13钢表面电火花沉积Nb涂层组织与性能研究[J]. 表面技术, 2019, 48(1): 285 − 290.

    Luan Chengqun, Wang Wenquan, Kuang Lixiang. Microstructures and Properties of Niobium Coating on H13 Steel Substrate by Electrospark Deposition[J]. Surface Technology, 2019, 48(1): 285 − 290.

    [7] 田浩亮, 张晓敏, 金国, 等. 电火花沉积高熵合金涂层的研究现状与展望[J]. 材料导报, 2021, 35: 342 − 346.

    Tian Haoliang, Zhang Xiaomin, Jin Guo, et al. Research status and prospect of high entropy alloy coating prepared by electrospark deposition[J]. Materials Reports, 2021, 35: 342 − 346.

    [8] 张建斌, 李建, 张雷雷. P92耐热钢表面电火花沉积Ni-Cr-Fe涂层及其抗氧化性能[J]. 兰州理工大学学报, 2019, 45(5): 1 − 5.

    Zhang Jianbin, Li Jian, Zhang Leilei. Ni-Cr-Fe coating on surface of P92 thermoresistant steel with electro-spark deposition and its oxidation resistance[J]. Journal of Lanzhou University of Technology, 2019, 45(5): 1 − 5.

    [9]

    Chandrakant, Reddy N S, Panigrahi B B. Electro spark coating of AlCoCrFeNi high entropy alloy on AISI410 stainless steel[J]. Materials Letters, 2021, 304: 130580. doi: 10.1016/j.matlet.2021.130580

    [10]

    Geambazu L E, Cotrut C M, Miculescu F, et al. Mechanically alloyed CoCrFeNiMo0.85 high-entropy alloy for corrosion resistance coatings[J]. Materials, 2021, 14(14): 3802. doi: 10.3390/ma14143802

    [11]

    Aghajani H, Hadavand E, Peighambardoust N, et al. Electro spark deposition of WC–TiC–Co–Ni cermet coatings on St52 steel[J]. Surfaces and Interfaces, 2020, 18: 100392. doi: 10.1016/j.surfin.2019.100392

    [12]

    Yusuf K, Sukru T. Investigation on wear behavior of steels coated with WC by ESD technique[J]. Protection of Metals and Physical Chemistry of Surfaces, 2021, 57(1): 106 − 112. doi: 10.1134/S2070205120060131

    [13] 王文权, 杜明, 张新戈, 等. H13钢表面电火花沉积WC-Ni基金属陶瓷涂层微观组织及摩擦磨损性能[J]. 金属学报, 2021, 57(8): 1048 − 1056.

    Wang Wenquan, Du Ming, Zhang Xinge, et al. Microstructure and tribological properties of WC-Ni matrix cermet coatings prepared by electrospark deposition on H13 Steel Substrate[J]. Acta Metallurgica Sinica, 2021, 57(8): 1048 − 1056.

    [14] 耿铭章, 王文权, 张新戈. 电火花沉积Ni/Ti(C, N)金属陶瓷复合涂层的组织及性能研究[J]. 表面技术, 2020, 49(4): 222 − 229.

    Geng Mingzhang, Wang Wenquan, Zhang Xinge. Microstructures and properties of Ni/Ti(C, N) composite cermet coating prepared by electrospark deposition[J]. Surface Technology, 2020, 49(4): 222 − 229.

    [15] 王小荣, 王朝琴, 何鹏, 等. 45钢表面高能微弧火花数控化沉积AlCoCrFeNi高熵合金[J]. 焊接学报, 2016, 37(10): 73 − 76.

    Wang Xiaorong, Wang Zhaoqin, He Peng, et al. Numerical control deposition of AlCoCrFeNi high-entropy alloy on 45 steel by high energy micro arc spark[J]. Transactions of the China Welding Institution, 2016, 37(10): 73 − 76.

    [16]

    Brochu M, Heard D W, Milligan. Bulk nanostructure and amorphous metallic components using the electrospark welding process[J]. Assembly Automation, 2010, 30(3): 248 − 256. doi: 10.1108/01445151011061145

    [17]

    Frangini A, Masci A. A study on the effect of a dynamic contact force control for improving electrospark coating properties[J]. Surface & Coatings Technology, 2010, 204(16): 2613 − 2623.

    [18] 王顺, 童金钟, 韩红彪. 一种电火花沉积接触力自动控制装置和沉积试验[J]. 焊接学报, 2021, 42(3): 42 − 47.

    Wang Shun, Tong Jinzhong, Han Hongbiao. An automatic control device of contact force for electro-spark deposition and deposition test[J]. Transactions of the China Welding Institution, 2021, 42(3): 42 − 47.

    [19] 高莹, 韩敬华, 娄丽艳, 等. 电极力对Cr12MoV电火花沉积YG6工艺影响[J]. 焊接学报, 2014, 35(1): 45 − 48.

    Gao Ying, Han Jinghua, Lou Liyan, et al. Influence of electrode pressure on Cr12MoV electric-spark depositing YG6 process[J]. Transactions of the China Welding Institution, 2014, 35(1): 45 − 48.

    [20]

    Elaiyarasan U, Satheeshkumar V, Senthilkumar C. Effect of sintered electrode on microhardness and microstructure in electro discharge deposition of magnesium alloy[J]. Journal of the Mechanical Behavior of Materials, 2020, 29(1): 69 − 76. doi: 10.1515/jmbm-2020-0007

    [21] 韩红彪, 李梦楠, 李世康, 等. 电火花沉积堆焊接触力转位移的自动控制装置及控制方法: 中国, CN202110178440.6[P]. 2021-05-07.

    Han Hongbiao, Li Mengnan, Li Shikang, et al. Automatic control device and control method of contact force converting displacement in electro-spark deposition: China, CN202110178440.6[P]. 2021-05-07.

    [22] 韩红彪, 郭敬迪, 焦文清. 旋转电极电火花沉积/堆焊的放电机理[J]. 焊接学报, 2019, 40(5): 67 − 72. doi: 10.12073/j.hjxb.2019400129

    Han Hongbiao, Guo Jingdi, Jiao Wenqing. Discharge mechanism of electro-spark deposition with rotary electrode[J]. Transactions of the China Welding Institution, 2019, 40(5): 67 − 72. doi: 10.12073/j.hjxb.2019400129

    [23] 陈俊潮, 韩红彪, 王中豪, 等. 不同电极运动形式下电火花堆焊的放电机理分析[J]. 表面技术, 2021, 50(6): 281 − 287. doi: 10.16490/j.cnki.issn.1001-3660.2021.06.032

    Chen Junchao, Han Hongbiao, Wang Zhonghao, et al. Analysis of discharge mechanism of electric spark overlaying in different modes of electrode movement[J]. Surface Technology, 2021, 50(6): 281 − 287. doi: 10.16490/j.cnki.issn.1001-3660.2021.06.032

图(8)  /  表(1)
计量
  • 文章访问数:  290
  • HTML全文浏览量:  44
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-05
  • 网络出版日期:  2022-12-14
  • 刊出日期:  2023-01-24

目录

    /

    返回文章
    返回