Abstract:
This study focuses on the Cu-Sn-Cu sandwich structure soldering, 0.06 MPa constant pressure. Different soldering temperatures and soldering times were selected based on the Cu-Sn binary phase diagram. After soldering according to different phase composition the solder joints can be divided into three types of residual Sn/Cu
3Sn-Cu
6Sn
5-Cu
3Sn/Cu-Cu
3Sn-Cu. The relationship among shear strength of solder joints and three different phases compositions were researched by shear experiment of 1 mm/min loading rate and fracture morphology analysis. The results show that the shear strength of solder joints increases with the depletion of Sn and Cu6Sn5 in sequence. The shear strength of residual Sn solder joints, Cu
3Sn-Cu
6Sn
5-Cu
3Sn solder joints and Cu-Cu
3Sn-Cu solder joints are 23.26, 33.59, 51.83 MPa, respectively. Based on the fracture morphology analysis, residual Sn solder joint fracture can distinguish the morphology of Sn/Cu
6Sn
5/Cu
3Sn, indicating that the crack path through the Cu
6Sn
5 and Cu
3Sn phases. In Cu
3Sn-Cu
6Sn
5-Cu
3Sn solder joint fracture, Cu
6Sn
5/Cu
3Sn morphology was distinguished, crack path through the Cu
3Sn phase. When only Cu
3Sn phase was at solder joints, was Cu
3Sn only Cu
3Sn can be seen in fracture morphology of the soldering joints.