高级检索

电弧增材制造多层单道堆积的焊道轮廓模型函数

刘理想, 柏兴旺, 周祥曼, 张海鸥

刘理想, 柏兴旺, 周祥曼, 张海鸥. 电弧增材制造多层单道堆积的焊道轮廓模型函数[J]. 焊接学报, 2020, 41(6): 24-29, 36. DOI: 10.12073/j.hjxb.20191230001
引用本文: 刘理想, 柏兴旺, 周祥曼, 张海鸥. 电弧增材制造多层单道堆积的焊道轮廓模型函数[J]. 焊接学报, 2020, 41(6): 24-29, 36. DOI: 10.12073/j.hjxb.20191230001
LIU Lixiang, BAI Xiangwang, ZHOU Xiangman, ZHANG Haiou. Study on the weld profile model function of multi-layer single-pass deposition in wire and arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(6): 24-29, 36. DOI: 10.12073/j.hjxb.20191230001
Citation: LIU Lixiang, BAI Xiangwang, ZHOU Xiangman, ZHANG Haiou. Study on the weld profile model function of multi-layer single-pass deposition in wire and arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(6): 24-29, 36. DOI: 10.12073/j.hjxb.20191230001

电弧增材制造多层单道堆积的焊道轮廓模型函数

基金项目: 国家自然科学基金资助项目(51975270,51705287,51505210);湖南省自然科学基金资助项目(2019JJ40245);南华大学核燃料循环技术与装备湖南省协同创新中心开放基金项目.
详细信息
    作者简介:

    刘理想,1994年出生,硕士;主要研究方向为电弧增材制造工艺与仿真; E-mail:1564038696@qq.com.

    通讯作者:

    柏兴旺,博士,副教授;主要研究方向为电弧增材制造工艺与仿真、焊接熔池动力学、金属基复合材料的熔丝电弧增材; E-mail:pancard@126.com.

  • 中图分类号: TG 444

Study on the weld profile model function of multi-layer single-pass deposition in wire and arc additive manufacturing

  • 摘要: 焊道截面轮廓的建模和分析为电弧增材制造过程中的切片、路径规划和工艺自动化提供必要的形貌数据. 采用MATLAB开发基于图像处理和曲线拟合的自适应拟合程序,可以在半椭圆函数、圆弧函数、余弦函数和抛物线函数之间自适应选择合适的拟合模型函数. 基于该程序,研究分析在焊接参数可行域内单层单道焊道截面轮廓最佳数学模型函数的分布情况,以及多层单道堆积过程中不同层数上焊道轮廓的最佳模型函数. 结果表明,自适应拟合程序对焊道截面的轮廓曲线拟合具有较好的精度;在堆焊焊接参数可行域中,单层单道焊道截面轮廓可以用半椭圆函数或余弦函数模型表示;而对于多层单道堆积,半椭圆函数模型对焊道最上层轮廓的拟合精度最高.
    Abstract: The modeling and analysis of the cross-sectional profile of the weld bead provide the necessary topography data for slicing, path planning and process automation in wire and arc additive manufacturing process. MATLAB is used to develop an adaptive fitting program based on image processing and curve fitting, which can adaptively select a suitable fitting model function among the semi-elliptic function, arc function, cosine function and parabolic function. Based on this program, the distribution of the best mathematical model function of the single-layer single-pass weld bead profile in the feasible region of welding parameters, and the best model function of the weld bead profile on different layers in the multi-layer single-pass deposition are studied and analyzed. The results show that the adaptive fitting program has good accuracy in fitting the profile curve of the weld bead section; in the feasible region of deposition parameters, the profile of the single-layer single-pass weld bead can be represented by a semi-elliptic function or a cosine function model; for multi-layer single-pass stacking, the semi-elliptic function model has the highest fitting accuracy to the top profile of the weld bead.
  • 随着汽车电子、航空电子、便携式移动电子以及大功率集成电子设备向着高密度化、微型化和多功能化方向的发展,三维(3D)高密度封装逐渐成为封装技术发展的潮流[1-2]. 在电子封装技术领域,微互连凸(焊)点起着机械连接、电气导通、信号传递等核心作用[3-4],而微互连铜核焊点更是由于具有不易桥连、导电性好、导热性良和熔点高等优点而被广泛应用于高性能计算芯片、存储器等高密度3D封装领域[5-6].

    在回流焊过程中,3D封装结构中铜核加入后,铜核与焊料、焊料与基板均发生化学反应,在铜核/焊料、焊料/基体金属界面处均会形成IMC层,界面IMC层作为焊点的重要和关键组成部分,它的结构及形貌对电子封装互连焊点可靠性连接有着重要的影响,薄且连续均匀的 IMC层有利于界面的良好结合[7]. 与传统锡球焊点相比,铜核焊点的界面数量、原子扩散距离、界面微观结构(即IMC层)等有较大的变化,且界面化合物占比较高,但是由于IMC层较脆,太厚的IMC层使焊点的可靠性降低[8-9]. 铜核单界面或同质界面的界面反应特征已经进行了大量研究[10-13],Jeong等人[10]采用同质双ENIG界面研究了ENIG/Cu核 SAC305/ENIG焊点在电迁移过程中的界面演变;Chen等人[13]研究了铜核Sn-Pb焊点在固态高温时效作用下的界面反应和力学性能,并研究了铜核大小对力学性能的影响. 然而,在3D封装中,铜核焊点会同时存在4个界面,即芯片/焊料、焊料/铜核、铜核/焊料和焊料/基板,在回流焊过程中,4个界面将同时发生界面反应,两端的原子可能穿过液体焊料扩散到另一端,相互影响对面的界面反应,这种状态下焊点的组织及性能在焊接和服役过程中的演变将与单界面焊点存在较大差异. 关于铜核添加的复合钎料异质基材焊点界面 IMC层在热时效过程中的生长行为和力学性能之间关系的研究还较少. 因此,研究Ni/Cu铜核 + 钎料/Cu异质焊点界面层的形貌和生长特征,更真实地模拟铜核焊点的实际应用环境具有重要指导意义. 为此,文中以Ni/Cu铜核 + Solder/Cu焊点为对象,研究该焊点在不同热时效时间作下的界面反应特征及拉伸性能,通过与Cu/Cu铜核 + Solder/Cu同质焊点力学性能进行对比,探讨和分析Ni/Cu铜核 + Solder/Cu焊点界面IMC层生长动力学行为及焊点力学性能,为提高铜核焊点的可靠性提供理论依据.

    试验采用直径d为400 μm的铜丝和镍丝(纯度均为99.9%)作为基体材料,采用商用低银无铅Sn-0.3Ag-0.7Cu(简称Solder)锡膏与直径为350 μm高纯度的镀镍铜核球作钎料. 首先采用线切割将铜丝和镍丝基体材料加工成长度为30 mm的小棒,再采用砂纸将基材待焊端面磨平后放置超声波仪器用无水乙醇清洗并吹干后备用,然后将镍丝、铜丝放到自制的V形夹具上,中间放入铜核和Solder锡膏,搭建Ni/Cu-core + Solder/Cu三明治线性焊点(Ni-Cu铜核焊点),焊点高度t (即两根基材中间的间隙)和试样总长度L分别控制在0.5和60 mm左右,焊点结构如图1所示. 将组装好的三明治焊点放置于温度为250 ℃的恒温炉中,待钎料熔化后在回流态保持20 s左右,立即将夹具和试样一起从炉中取出放置于空气中冷却至室温,回流后采用酒精浸泡以去除试样表面残留的助焊剂.

    图  1  焊点结构示意图
    Figure  1.  Schematic illustration of sandwich solder joint

    将焊接后的试样用砂纸打磨掉焊点表面的氧化物及多余的钎料,然后将处理后的微焊点放置于恒温箱中进行不同时长(48、120、360 h)的100 ℃等温时效试验. 将经历不同时长热时效处理后的焊点取出进行镶嵌、打磨、抛光及腐蚀后使用带X射线能谱(energy dispersive spectrometer,EDS)的扫描电镜进行显微组织观察,采用Image-pro软件对3幅SEM图片的界面IMC厚度进行测量,并结合EDS分析界面层相组成.

    将热时效后的焊点在DMAQ 800设备进行常温(约25 ℃)拉伸试验,加载速率设置为1 N/min. 每个热时效时长下的焊点分别取3个进行拉伸试验,将所得数据求平均值,在SEM扫描电镜上观察拉伸断口形貌.

    Ni-Cu铜核焊点在250 ℃回流焊20 s后空冷至室温的界面IMC显微组织及形貌,如图2所示. 由图2可观察到在各界面上均形成了一层很薄的连续的IMC层. 图2中A、B、C和D点的能谱分析如图3所示,除Solder/Cu基界面外,Ni基/Solder、近Ni基侧Solder/Cu铜核和近Cu基侧Cu铜核/Solder 3个界面IMC层均由Sn,Cu和Ni 3种元素组成,在Ni基/Solder界面处该相组成(摩尔分数)为44.32%Cu-14.97%Ni-40.71%Sn,其中(Cu + Ni)与Sn的原子数比为(44.32 + 14.97)∶40.71,接近6∶5,因此,将该相表征为(Cu,Ni)6Sn5,在近Ni基侧Solder/Cu铜核和近Cu基侧Cu铜核/Solder两个界面B点和C点处该相组成中,(Cu + Ni)与Sn的原子数比接近6∶5,因此,将该相表征为(Cu,Ni)6Sn5. Solder/Cu基界面D点的能谱分析,该相成分56.47%Cu-43.53%Sn,Cu与Sn的原子数比接近6∶5,因此,将该相也表征为Cu6Sn5. 从各界面的相组成来看,除Solder/Cu基界面外,其他3个界面上发生了明显的Cu-Ni交互作用. Solder/Cu基界面IMC形态呈扇贝状,其他3个界面形成近似针状的界面形貌,同时在近Cu基侧还发现有少量Cu6Sn5颗粒分布于钎料基体中,Ni基侧的IMC厚度明显比Cu基侧小,近Ni基侧的Solder/Cu铜核界面IMC厚度也略小于近Cu基侧的.

    图  2  回流焊后Ni-Cu铜核焊点的显微组织
    Figure  2.  Microstructures of Cu-Ni Cu-core joints after reflow soldering. (a) Ni/Solder interface; (b) Solder/Cu core interface near the Ni side; (c) Cu core/Solder interface near the Cu side; (d) Solder/Cu interface
    图  3  图2中A、B、C和D点的EDS分析图谱
    Figure  3.  EDS analysis pattern of A、B、C and D points in Fig.2 (a) Label A; (b) Label B; (c) Label C; (d) Label D

    Ni-Cu铜核焊点在100 ℃热时效48、120、360 h后的界面形貌,如图4 ~ 图6所示. 可以看出,各界面IMC层的厚度均随着热时效时间的延长而增加,Ni基/Solder和近Ni基侧的Solder /Cu铜核两个界面的IMC层生长速率略低于Solder/Cu基和近Cu基侧的Cu铜核/Solder两个界面IMC层的生长速率. 随着时效时间的增加,Solder/Cu基界面处的IMC层与焊料基体的界面形貌由平坦向锯齿状转变,但齿尖深入焊料基体较浅;其他3个界面的IMC层除厚度增加外,其界面形貌变化不显著. 在近Cu基侧钎料基体中观察到有较大尺寸块状的Cu6Sn5存在,而近Ni基侧钎料基体中,发现少量尺寸较小的(Cu,Ni)6Sn5颗粒存在,可能是基体或铜核表面Ni原子扩散到钎料中形成的金属间化合物. 结果表明,在Ni-Cu铜核焊点中,采用Ni作为基体,对焊点界面IMC层过度生长起到了明显的抑制效果,有利于改善焊点服役可靠性.

    图  4  热时效48 h后微焊点的显微组织
    Figure  4.  Microstructures of Ni-Cu Cu-core joints after aging for 48 h. (a) Ni/Solder interface; (b) Solder/Cu core interface near the Ni side; (c) Cu core/Solder interface near the Cu side; (d) Solder/Cu interface
    图  5  热时效120 h后微焊点的显微组织
    Figure  5.  Microstructures of Ni-Cu Cu-core joints after aging for 120 h. (a) Ni/Solder interface; (b) Solder/Cu core interface near the Ni side; (c) Cu core/Solder interface near the Cu side; (d) Solder/Cu interface
    图  6  热时效360 h后微焊点的显微组织
    Figure  6.  Microstructures of Ni-Cu Cu-core joints after aging for 360 h. (a) Ni/Solder interface; (b) Solder/Cu core interface near the Ni side; (c) Cu core/Solder interface near the Cu side; (d) Solder/Cu interface

    此外,热时效时长的增加并未改变Ni基/Solder、近Ni基侧Solder/Cu核和近Cu基侧Cu核/Solder 3个界面IMC种类. 通常在(Cu,Ni)6Sn5/铜核间界面形成的典型Cu3Sn未被检测到,主要原因是在回流焊过程中,一定量的Ni原子从镍基体界面扩散到铜核界面,Ni原子抑制了Cu3Sn的生成,与Tian等人[14]的研究结果相同. 在经历360 h热时效的试样中,在Solder/Cu基界面处,未观察到明显的IMC分层现象,但通过对界面进行能谱分析可知,Cu-Ni铜核焊点经较长热时效后,Solder/Cu基界面IMC层由Cu6Sn5和Cu3Sn两层化合物组成,即位于焊料一侧的Cu6Sn5层以及位于Cu基板和Cu6Sn5之间的Cu3Sn层,如图7所示,两种化合物中的Cu原子均来源于铜基板,Sn来自于钎料,Cu6Sn5是一种不稳定的化合物,在热时效时会发生以下反应[15]

    图  7  图6(d)中E点的EDS分析图谱
    Figure  7.  EDS analysis pattern of E point in Fig.6(d)
    $$ \mathrm{6Cu + 5Sn = Cu}_{ \mathrm{6}} \mathrm{Sn}_{ \mathrm{5}} $$ (1)
    $$ \mathrm{3Cu + Sn = Cu}_{ \mathrm{3}} \mathrm{Sn} $$ (2)
    $$ \mathrm{9Cu + Cu}_{ \mathrm{6}} \mathrm{Sn}_{ \mathrm{5}} \mathrm{ = 5Cu}_{ \mathrm{3}} \mathrm{Sn} $$ (3)

    从热时效时间对焊点的微观组织演变可以看出,在热时效过程中,焊料与基体、焊料与铜核不断发生着反应,使界面层的厚度随着热时效时间的增加而变厚,界面IMC层厚度随时效时间的变化规律,如图8所示. 随着时效时间的延长,各界面IMC层逐渐变厚,Solder/Cu基界面的IMC厚度无论在哪个时刻均大于其他3个界面,可能是与Cu侧界面离Ni侧最远其受到Ni原子的影响最小有关. 热时效0 ~ 48 h内,Solder/Cu基界面IMC增长速率最快,随后该界面的IMC增长速率有所下降,这主要是因为Cu基界面在热时效初期形成的较厚Cu6Sn5有效的阻挡了Cu基体界面的Cu元素扩散进入钎料. 时效120 h后,Ni基/Solder、近Ni基侧Solder/Cu核和近Cu基侧Cu核/Solder 3个界面的(Cu,Ni)6Sn5生长速率均有下降趋势,这可能与界面之前已生成的(Cu,Ni)6Sn5层减缓了Ni、Sn和Cu原子的扩散速率有关. 时效360 h时,Ni基/Solder的界面IMC层厚度为5.38 μm,约为Solder/Cu基界面层厚度的一半.

    图  8  热时效前后界面IMC层厚度变化
    Figure  8.  IMC thickness at Ni-Cu joints under aging times at 100 ℃

    根据测试界面层IMC厚度结果,得到各界面层IMC层的厚度和热时效时间的拟合关系曲线如图9所示,为

    图  9  焊点界面IMC层厚度与时效时间的关系
    Figure  9.  Relationship IMC thickness of Ni-Cu joints and logarithm of aging time
    $$ \mathit{l}\mathrm{=}\mathit{l}_{\mathrm{0}}\mathrm{+}\mathit{Kt}^{\mathit{\mathrm{1/2}}} $$ (4)

    式中:l是时效过程中IMC层厚度(μm);l0是时效前 IMC层厚度(μm);K是IMC层生长系数(μm2/h);t是热时效时间(h) .

    图9可以观察到4个界面IMC层厚度与热时效时间近似呈线性增长趋势,拟合线的斜率反映了界面IMC层厚度随时间的增长趋势. 显然,100 ℃时效时,Ni基/Solder界面IMC层的增长速率仅为Solder/Cu基界面的70%,近Ni基侧Solder/Cu核和近Cu基侧Cu核/Solder两个界面的IMC生长速率也明显比Solder/Cu基的低,说明在同等时效条件下,采用焊料中添加微量Ni或采用Ni作基体可显著减缓焊点界面IMC层的生长趋势. 从图9还可以看出,4个界面层在100 ℃时效时的生长指数均为0.5,表明(Cu,Ni)6Sn5层和Cu6Sn5层的生长以扩散控制为主,该研究结果与SAC焊点可靠性研究中IMC层的生长行为吻合[16].

    Cu-Cu铜核同质焊点和Ni-Cu铜核异质焊点时效前后焊点拉伸强度的变化,如图10所示. 从图10可以得到看出,随着热时效时间的延长,焊点的强度逐渐下降. 在相同时效时长下,Ni-Cu铜核焊点拉伸强度比Cu-Cu铜核焊点稍大,在时效120 h内,两种焊点的抗拉强度均下降较快,随后强度下降速率略缓,但Cu-Cu铜核焊点强度下降速率稍大于Cu-Ni焊点的.

    图  10  焊点拉伸强度随时效时间变化曲线
    Figure  10.  Tensile strength of joints aged at 100 ℃ for various time

    Ni-Cu铜核焊点的抗拉强度从回流焊后的38.60 MPa下降到热时效360 h后的20.77 MPa,拉伸强度下降了46.19%. 结合Ni-Cu铜核焊点4种界面IMC层的生长曲线可知,Ni-Cu铜核焊点各界面的生长速率和厚度均有差异,在热时效48 h时,其Ni基/Solder界面IMC厚度约为3.37 μm,而热时效360 h后,其Ni基/Solder界面IMC厚度约为5.38 μm,与回流焊后Solder/Cu基侧的IMC厚度相当.很显然,焊点抗拉强度变化规律与焊点IMC层的厚度有关,界面IMC是脆性物质,过厚的界面化合物将会导致微焊点的拉伸性能降低,因此热时效引起的界面IMC厚度的增加是引起微焊点抗拉强度下降的原因之一.

    试验研究发现,Cu-Cu和Ni-Cu两种铜核焊点在轴向拉伸试验中,其拉伸断裂主要在钎料/铜基界面附近和近铜基侧的钎料部分,以韧脆混合断裂为主,拉伸断口形貌如图11所示. 由于Cu-Cu铜核焊点的断裂位置与断口形貌与Ni-Cu焊点的断裂位置与断口形貌基本一致,因此图11中只列出Ni-Cu焊点的拉伸断口形貌. 从图11很明显可以看到,在断口处均发现有类似小球的颗粒状和撕裂的韧窝存在. 对颗粒状小球进行能谱分析,如图12所示,可以推断颗粒小球主要成分为Cu6Sn5,即界面IMC,这与Somidin等人[17]从IMC层侧面观察到Cu6Sn5成扇贝状相吻合.

    图  11  Ni-Cu铜核焊点经过不同热时效处理后的拉伸断口形貌
    Figure  11.  Tensile fracture surface of Ni-Cu Cu-core joints after different aging time. (a) 0 h; (b) 48 h; (c) 120 h; (d) 360 h
    图  12  图11中F区局部放大及G点的EDS分析
    Figure  12.  Magnification of zone F and EDS analysis pattern of G point in Fig 11. (a) magnification of zone F in Figure 11; (b) EDS analysis pattern of G point

    图11所示,焊态和热时效后的焊点断口表面均出现了一定数量的韧窝,同时断口存在少部分裸露的Cu6Sn5层,随热时效时间的延长,裸露的Cu6Sn5层占比有增大倾向,说明焊点的断裂位置在更靠近IMC的体钎料处,可能是因为随着时效时间的延长,焊点靠近铜基侧界面IMC晶粒长大导致晶粒间结合强度降低,同时界面IMC自身的脆性也使得界面处连接强度变弱[18],因此断裂位置更靠近IMC的体钎料处. 在Ni-Cu异质焊点中,Cu在焊料/Ni界面发生耦合反应,抑制了界面IMC层的生长,在一定程度上起到了减缓焊点力学性能恶化的效果,有利于提高焊点的可靠性.

    (1) Ni-Cu铜核焊点,在Ni基/Solder、近Ni侧Solder/Cu核以及近Cu侧Solder/Cu核界面处均形成(Cu,Ni)6Sn5 IMC层,表明Cu原子穿过钎料到达Ni基侧参与界面反应,Solder/Cu基界面处形成Cu6Sn5 IMC层. 焊点4个界面的IMC层平整、连续,且主要呈锯齿状.

    (2) 热时效中,界面IMC厚度均随着热时效时间的延长而逐渐增大,而且生长行为以扩散控制为主. 在相同时效条件下,近Cu基侧的两个界面IMC层厚度分别小于近Ni基侧的两个IMC层的厚度.

    (3) Ni-Cu铜核焊点的拉伸强度略高于Cu-Cu铜核焊点的,两种焊点的拉伸强度均随热时效时间延长而降低且断裂模式均以韧脆混合断裂为主,断裂位置主要发生在近Cu基侧IMC层厚度较大的体钎料处. 随着热时效时间的延长,断裂位置越倾向于近Cu基侧IMC层处,采用Ni替代Cu作基体,可减缓界面层的生长速度,有利于提高铜核焊点的可靠性.

  • 图  1   图片处理流程

    Figure  1.   Picture processing flow. (a) position adjustment; (b) improved binarization; (c) Canny detection; (d) smoothing

    图  2   焊道截面轮廓示意图

    Figure  2.   Schematic diagram of cross-section of weld bead

    图  3   预测面积与计算面积的相对误差

    Figure  3.   Relative error of predicted and calculated area

    图  4   自适应拟合程序对第17组分析结果

    Figure  4.   Result of adaptive fitting program for group 17

    图  5   各模型的SSE值和Rsw之间的关系

    Figure  5.   Relationship between each models SSE and Rsw

    图  6   堆积可行域中的最佳模型函数

    Figure  6.   Best model functions in deposition feasible regions

    图  7   多层单道焊道截面轮廓

    Figure  7.   Cross-section of multi-layer single-pass

    图  8   层数与各模型SSE值的关系

    Figure  8.   Relationship between the number of layers and the SSE value of each model. (a) vw= 9 mm/s, vs = 5.5 m/min; (b) vw = 4 mm/s ,vs = 5 m/min

    表  1   焊道数学模型函数

    Table  1   Mathematical model of weld

    模型模型函数焊道横截面预测面积Ap / mm2
    半椭圆模型$ y=a+\sqrt{{b}^{2}-\dfrac{{b}^{2}{x}^{2}}{{c}^{2}}} $ $\left(a\leqslant 0,b > 0,c>0\right)$${A}_{1}=\displaystyle\int _{-w/2}^{w/2}(a+\sqrt{ {b}^{2}-\dfrac{ {b}^{2}{x}^{2} }{ {c}^{2} } })$
    圆弧模型$ y=a+\sqrt{{b}^{2}-{x}^{2}} $ $\left(a \leqslant 0,b > 0\right)$${A}_{2}=\displaystyle\int _{-w/2}^{w/2}(a+\sqrt{ {b}^{2}-{x}^{2} })$
    余弦模型$y=a+b{\rm{cos}}\left(cx\right)$ $\left(a \leqslant 0,b > 0,c>0\right)$${A_3} = \displaystyle\int _{ - w/2}^{w/2}(a + b{\rm{cos} }\left( {cx} \right))$
    抛物线模型$ y=a{x}^{2}+b $ $ \left(a < 0\right) $${A}_{4}=\displaystyle\int _{-w/2}^{w/2}(a{x}^{2}+b)$
    下载: 导出CSV

    表  2   四种模型函数自适应拟合结果

    Table  2   Results of four models adaptive fitting program

    试验序号焊接速度vw/(mm·s−1)送丝速度vs/(m·min−1)熔宽w/mm熔高h/mm计算面积Ac/mm2半椭圆模型 圆弧模型 余弦模型 抛物线模型
    R2SSEA1/mm2R2SSEA2/mm2R2SSEA3/mm2R2SSEA4/mm2
    1 4 5 8.895 3.141 22.154 0.997 0.709 22.046 0.995 1.500 22.066 0.978 5.339 22.023 0.979 5.901 22.027
    2 4.5 5 8.429 3.074 20.067 0.998 0.653 19.867 0.996 1.423 19.844 0.982 4.271 19.879 0.984 4.828 19.881
    3 5.5 5 7.610 2.761 16.352 0.998 0.529 16.331 0.996 0.811 16.313 0.987 1.882 16.334 0.989 2.620 16.336
    4 8 5 5.914 2.348 11.391 0.970 4.290 11.522 0.985 3.930 11.373 0.987 2.527 11.544 0.980 2.864 11.544
    5 4 6 10.505 3.275 25.543 0.997 1.392 25.209 0.996 1.510 25.203 0.992 3.141 25.211 0.993 2.831 25.213
    6 4.5 6 9.648 3.200 23.178 0.996 1.527 22.891 0.994 2.103 22.875 0.989 3.862 22.881 0.990 3.559 22.883
    7 5 6 8.990 3.062 20.654 0.996 1.219 20.565 0.995 1.490 20.550 0.992 2.324 20.563 0.993 2.136 20.565
    8 5.5 6 8.552 2.877 18.839 0.996 0.812 18.727 0.995 1.169 18.722 0.995 2.221 18.719 0.995 2.030 18.720
    9 6 6 8.029 2.749 17.157 0.999 1.275 17.078 0.999 1.975 17.079 0.987 2.958 17.095 0.988 2.687 17.096
    10 4 7 11.124 3.323 27.260 0.997 1.541 27.028 0.996 1.719 27.022 0.993 2.945 26.997 0.994 2.660 27.001
    11 4.5 7 10.571 3.230 25.262 0.998 1.048 25.042 0.996 1.442 25.025 0.995 2.757 25.025 0.996 2.273 25.027
    12 5 7 9.657 3.132 22.153 0.997 1.846 21.915 0.992 2.759 21.891 0.998 3.745 21.912 0.998 3.231 21.913
    13 5.5 7 9.029 2.783 18.894 0.996 1.029 18.722 0.995 1.504 18.713 0.993 2.836 18.718 0.993 2.490 18.719
    14 8 7 7.143 2.631 13.980 0.994 1.416 13.994 0.991 1.826 13.821 0.989 2.472 14.040 0.990 2.965 14.036
    15 9.333 7 6.543 2.406 11.781 0.964 2.722 11.737 0.954 3.145 11.665 0.994 1.271 11.912 0.992 1.461 11.871
    16 12 7 6.086 2.419 10.930 0.988 2.342 10.966 0.951 2.981 10.822 0.993 1.043 11.013 0.991 1.439 10.980
    17 4 8 13.817 3.440 32.595 0.998 1.270 32.112 0.998 1.734 32.111 0.993 3.611 32.113 0.994 3.865 32.116
    18 4.5 8 11.181 3.516 28.860 0.998 1.166 28.500 0.997 1.731 28.492 0.994 3.150 28.479 0.995 2.765 28.483
    19 5 8 10.329 3.384 25.968 0.998 0.930 25.784 0.996 1.362 25.759 0.995 2.208 25.788 0.995 1.933 25.789
    20 5.5 8 9.971 3.139 23.029 0.998 0.832 22.760 0.995 1.484 22.733 0.997 2.199 22.759 0.997 1.968 22.760
    21 8 8 8.143 2.780 16.618 0.995 1.137 16.594 0.992 1.728 16.566 0.994 2.467 16.595 0.994 2.782 16.596
    22 12 8 6.943 2.344 11.360 0.967 5.357 11.424 0.951 5.681 11.332 0.987 2.122 11.474 0.973 2.877 11.440
    23 16 8 5.833 1.917 9.028 0.997 4.264 9.353 0.989 5.365 9.307 0.991 2.778 9.366 0.992 3.220 9.365
    下载: 导出CSV

    表  3   自适应拟合程序运行结果

    Table  3   Results of adaptive fitting program

    试验序号焊接速度vw/(mm·s−1)送丝速度vs/(m·min−1)层熔宽W/mm总熔高H/mm半椭圆模型 圆弧模型 余弦模型 抛物线模型
    R2SSER2SSER2SSER2SSE
    1 9 5.5 7.086 2.276 0.945 7.274 0.950 10.622 0.993 1.911 0.980 2.661
    2 9 5.5 7.452 4.022 0.995 2.470 0.949 10.141 0.989 4.903 0.990 4.589
    3 9 5.5 7.399 5.465 0.995 2.365 0.984 8.568 0.953 14.589 0.957 12.309
    4 9 5.5 7.424 7.024 0.994 2.932 0.991 4.282 0.964 10.297 0.955 10.718
    5 9 5.5 7.355 8.350 0.990 3.220 0.986 4.724 0.956 14.878 0.960 13.486
    6 9 5.5 7.890 9.668 0.992 2.330 0.991 3.377 0.956 12.179 0.963 10.288
    7 9 5.5 8.145 11.247 0.998 1.853 0.993 2.467 0.946 18.869 0.949 17.827
    8 4 5 9.629 3.113 0.998 0.756 0.996 2.736 0.986 6.331 0.989 4.823
    9 4 5 9.890 5.572 0.998 1.671 0.998 3.871 0.942 16.878 0.953 12.623
    10 4 5 10.537 7.515 0.998 1.872 0.994 6.467 0.979 12.551 0.986 10.529
    11 4 5 10.663 9.344 0.995 1.736 0.978 7.523 0.941 17.007 0.957 14.785
    12 4 5 10.968 11.287 0.992 6.102 0.992 9.232 0.953 17.922 0.964 13.610
    13 4 5 11.197 13.129 0.994 4.738 0.970 12.516 0.955 18.686 0.963 17.063
    14 4 5 11.720 15.044 0.997 1.426 0.989 6.542 0.946 20.657 0.960 18.791
    下载: 导出CSV
  • [1] 韩文涛, 林健, 雷永平, 等. 不同层间停留时间下电弧增材制造2Cr13薄壁件热力学行为[J]. 焊接学报, 2019, 40(12): 47 − 52.

    Han Wentao, Lin Jian, Lei Yongping, et al. Thermodynamic behavior of 2Cr13 thin-walled parts manufactured by arc additive under different residence time[J]. Transactions of the China Welding Institution, 2019, 40(12): 47 − 52.

    [2]

    Hu Z, Qin X, Li Y, et al. Welding parameters prediction for arbitrary layer height in robotic wire and arc additive manufacturing[J]. Journal of Mechanical Science and Technology, 2020, 34(4): 1683 − 1695.

    [3]

    Ding D, Shen C, Pan Z, et al. Towards an automated robotic arc-welding-based additive manufacturing system from CAD to finished part[J]. Computer-aided Design, 2016(73): 66 − 75.

    [4]

    Cao Y, Zhu S, Liang X, et al. Overlapping model of beads and curve fitting of bead section for rapid manufacturing by robotic MAG welding process[J]. Robotics & Computer Integrated Manufacturing, 2011, 27(3): 641 − 645.

    [5]

    Suryakumar S, Karunakaran K P, Bernard A, et al. Weld bead modeling and process optimization in hybrid layered manufacturing[J]. Computer-Aided Design, 2011, 43(4): 331 − 344. doi: 10.1016/j.cad.2011.01.006

    [6]

    Xiong J, Zhang G, Gao H, et al. Modeling of bead section profile and overlapping beads with experimental validation for robotic GMAW-based rapid manufacturing[J]. Robotics and Computer-Integrated Manufacturing, 2013, 29(2): 417 − 423. doi: 10.1016/j.rcim.2012.09.011

    [7]

    Ding D, Pan Z, Cuiuri D, et al. A multi-bead overlapping model for robotic wire and arc additive manufacturing (WAAM)[J]. Robotics & Computer Integrated Manufacturing, 2015, 31(C): 101 − 110.

    [8] 闫峘宇, 刘文洁, 李新宇, 等. 电弧增材制造焊缝建模及尺寸规律研究[J]. 热加工工艺, 2018, 47(5): 177 − 181.

    Yan Huanyu, Liu Wenjie, Li Xinyu, et al. Study on weld modeling and dimension rules of wire and arc additive manufacturing[J]. Hot Working Technology, 2018, 47(5): 177 − 181.

    [9]

    Hu Z, Qin X, Li Y, et al. Multi-bead overlapping model with varying cross-section profile for robotic GMAW-based additive manufacturing[J]. Journal of Intelligent Manufacturing, 2019: 1-15.doi: 10.1007/s10845-019-01501-z.

    [10]

    Xiong J, Zhang G, Qiu Z, et al. Vision-sensing and bead width control of a single-bead multi-layer part: material and energy savings in GMAW-based rapid manufacturing[J]. Journal of Cleaner Production, 2013, 41(1): 82 − 88.

    [11]

    Bai X, Colegrove P, Ding J, et al. Numerical analysis of heat transfer and fluid flow in multilayer deposition of PAW-based wire and arc additive manufacturing[J]. International Journal of Heat and Mass Transfer, 2018, 124: 504 − 516. doi: 10.1016/j.ijheatmasstransfer.2018.03.085

图(8)  /  表(3)
计量
  • 文章访问数:  724
  • HTML全文浏览量:  50
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-29
  • 网络出版日期:  2020-09-26
  • 刊出日期:  2020-09-26

目录

/

返回文章
返回