高级检索

一种核电用镍基合金焊丝熔敷金属的组织与性能

Microstructure and mechanical properties of deposited metal for nuclear plant nickel alloy welding wire

  • 摘要: 通过采用JMatPro软件,OM,SEM,TEM等手段分析了试制镍基合金焊丝GTAW熔敷金属的组织与力学性能. 结果表明:试验焊丝熔敷金属金相组织主要由柱状树枝晶γ相(NiCrFe固溶体)、枝晶间富Mo和Nb的偏析γ相以及枝晶间分布的(Nb,Ti)C碳化物、(Ni,Cr,Fe)2(Nb,Mo)型Laves相、MoCrFe型σ相等组成. Mo,Nb等元素在组织中存在偏析现象,相比于焊丝化学成分,熔敷金属中枝晶干γ相Fe含量较高,Mo,Nb含量较低,而枝晶间Mo,Nb含量较高、Fe含量较低. 熔敷金属室温、350 ℃高温抗拉及屈服强度较高、塑性较好,室温拉伸断口形貌以沿晶分布的韧窝为主,在韧窝底部存在密集的析出相.

     

    Abstract: Microstructure and mechanical properties of deposited metal with experimental nickel alloy wires by GTAW was investigated by JMatPro software, OM, SEM, TEM etc. Results indicated that there were columnar γ matrix, interdentritic precipitates including σ phase, MC carbides, Laves phases in the deposited metal. Compared with nominal chemical compositions, dendrite core has higher Fe content and lower Nb, Mo content, while interdendritic segregation zone has higher Nb, Mo content and lower Fe content. MC carbide was (Nb,Ti)C, Laves is rich in Mo and Cr with structural formula (Ni,Cr,Fe)2(Nb,Mo), σ phases is rich in Mo and Cr with MoCrFe tetragonal structure. The deposited metal has high strength and good ductility at room temperature and 350 ℃. Dimples along grain boundary dominants the fracture morphology of tensile specimen at room temperature, with dense precipitates in the bottom of dimples.

     

/

返回文章
返回