Effect of fatigue damage on stress corrosion cracking sensitivity of nuclear steam turbine welded joint
-
摘要: 采用慢应变速率拉伸试验(SSRT)研究了不同程度疲劳损伤对核电汽轮机焊接转子接头应力腐蚀开裂敏感性的影响,利用扫描电子显微镜等观察手段讨论了疲劳损伤对汽轮机焊接接头应力腐蚀开裂敏感性和二次裂纹的作用机理. 结果表明,疲劳损伤增强了核电汽轮机焊接转子接头应力腐蚀开裂敏感性. 此外,疲劳损伤的作用使空气中试样的塑性提高而在腐蚀溶液中塑性降低,也影响了试样内部二次裂纹的产生和扩展.Abstract: The effect of fatigue damage on the stress corrosion cracking susceptibility of nuclear steam turbine welded rotor was studied by slow strain rate test (SSRT). The mechanism of fatigue damage on stress corrosion cracking susceptibility and secondary crack of nuclear steam turbine welded joint was discussed by scanning electron microscope (SEM). The results show that fatigue damage enhances the stress corrosion cracking susceptibility of welded joints. In addition, the fatigue damage increased the plasticity of the samples in the air and decreased the plasticity in the corrosion environment, furthermore, it affected the formation and propagation of the secondary cracks in the samples.
-
Keywords:
- nuclear steam turbine rotor /
- welded joint /
- stress corrosion /
- slow strain rate test
-
-
图 12 3.5%NaCl溶液中典型疲劳周次SSRT断裂位置附近表面形貌与裂纹形貌
Figure 12. Surface topography near the typical fatigue fracture location and crack morphology in 3.5% NaCl solution. (a) 0 cycle ;(b) amplifying at A of 0 cycle; (c) 9 000 cycles; (d) amplifying at B of 9 000 cycles; (e) crack morphology of 0 cycle; (f) crack morphology of 9 000 cycles
表 1 25Cr2Ni2MoV钢焊接接头母材和焊缝的化学成分(质量分数,%)
Table 1 Chemical compositions of 25Cr2Ni2MoV welded joint base metal and weld
材料 C Si Mn P S Cr Ni Mo V BM 0.23 0.10 0.18 0.005 0.005 2.33 2.21 0.75 0.1 WM 0.12 0.20 1.48 0.005 0.005 0.57 2.18 0.51 — 表 2 SSRT试验参数与应力腐蚀开裂敏感性指标
Table 2 SSRT experimental parameters and stress corrosion cracking sensitivity indexes
疲劳寿命C(周次) 环境 屈服强度ReL/MPa 强度极限RTS/MPa 断后伸长率A(%) 断面收缩率Z(%) 敏感性参数(%) I1 I2 0 空气 647 708 13.5 59.5 — — 腐蚀 602 666 7.0 29.5 51.85 49.58 2 500 空气 710 738 15.0 66.0 — — 腐蚀 665 724 5.5 12.0 36.67 18.18 5 000 空气 688 763 15.0 62.0 — — 腐蚀 681 742 5.0 17.5 33.33 28.23 9 000 空气 705 759 14.5 64.5 — — 腐蚀 679 726 4.5 12.5 31.03 19.38 15 000 空气 707 751 14.0 63.0 — — 腐蚀 675 717 6.0 16.0 42.86 25.40 表 3 典型周次裂纹形貌EDS元素分布(质量分数,%)
Table 3 Distribution of crack morphology EDS element under typical cycles
位置 O Cl Cr Fe Ni 0周次 9 000周次 0周次 9 000周次 0周次 9 000周次 0周次 9 000周次 0周次 9 000周次 1 25.73 25.35 0.09 0.07 0.61 1.06 63.53 71.14 1.93 2.38 2 16.27 21.57 0.01 0.11 0.3 0.65 29.36 75.56 0.7 2.11 3 18.67 18.05 0.11 0.11 1.3 0.98 59.49 77.69 1.35 2.36 4 0 0.43 0 0.07 0.71 0.85 80.67 95.63 1.73 3.01 -
[1] 何阿平, 沈国平, 黄庆华, 等. 中国核电汽轮机发展与展望[J]. 热力透平, 2015, 44(4): 225 − 232. He Aping, Shen Guoping, Huang Qinghua, et al. Development and prospect of nuclear power turbine in China[J]. Thermal Turbine, 2015, 44(4): 225 − 232.
[2] 刘大松. 浅析核电百万千瓦汽轮机低压转子焊接质量控制[J]. 中国设备工程, 2019(10): 34 − 36. doi: 10.3969/j.issn.1671-0711.2019.10.029 Liu Dasong. Analysis of the welding quality control of low-pressure rotor of nuclear power million-kilowatt steam turbine[J]. China Plant Engineering, 2019(10): 34 − 36. doi: 10.3969/j.issn.1671-0711.2019.10.029
[3] 孙康娜, 贺小忠. “华龙一号”核电汽轮机创新设计特点[J]. 热力透平, 2017, 46(2): 93 − 97. Sun Kangna, He Xiaozhong. Innovative design features of Hualong No.1 nuclear power steam turbine[J]. Thermal Turbine, 2017, 46(2): 93 − 97.
[4] 欧阳玉清, 黄毓晖, 翁硕, 等. 核电汽轮机焊接转子接头在氯离子环境中的电偶腐蚀行为[J]. 焊接学报, 2019, 40(6): 153 − 160. doi: 10.12073/j.hjxb.2019400171 Ouyang Yuqing, Huang Yuhui, Wong Shuo, et al. Galvanic corrosion behavior of nuclear steam turbine welded joint in chloride environment[J]. Transactions of the China Welding Institution,, 2019, 40(6): 153 − 160. doi: 10.12073/j.hjxb.2019400171
[5] Darya Snihirova, Daniel Höche, Sviatlana Lamaka, et al. Galvanic corrosion of Ti6Al4V-AA2024 joints in aircraft environment: modelling and experimental validation[J]. Corrosion Science, 2019, 157: 70 − 78. doi: 10.1016/j.corsci.2019.04.036
[6] Wang S Y, Ding J, Ming H L, et al. Characterization of low alloy ferritic steel-Ni base alloy dissimilar metal weld interface by SPM techniques, SEM/EDS, TEM/EDS and SVET[J] Materials Characterization, 2015, 100: 50−60.
[7] Luo L H, Huang Y H, Weng S, et al. Mechanism-related modelling of pit evaluation in the CrNiMoV steel in simulated environment of low pressure nuclear steam turbine[J] Materials and Design, 2016, 105: 240−250.
[8] Mariusz Banaszkiewicz, Anna Rehmus-Forc. Stress corrosion cracking of a 60 MW steam turbine rotor[J]. Engineering Failure Analysis, 2015, 51: 55 − 68. doi: 10.1016/j.engfailanal.2015.02.015
[9] Lin Shuxian, Huang Yuhui, Xuan Fuzhen, et al. Study on stress corrosion cracking sensitivity of CrNiMoV steam turbine rotor steels[J]. Key Engineering Materials, 2019, 4784: 102 − 108.
[10] Marko Katinić, Dražan Kozak, Ivan Gelo, et al. Corrosion fatigue failure of steam turbine moving blades: a case study[J]. Engineering Failure Analysis, 2019, 106: 104136. doi: 10.1016/j.engfailanal.2019.08.002
[11] Chu Tongjiao, Cui Haichao, Tang Xinhua, et al. Stress corrosion crack growth rate of welded joint used for low-pressure rotor of nuclear turbine in oxygenated pure water at 180 ℃[J]. Journal of Nuclear Materials, 2019, 523: 276 − 290. doi: 10.1016/j.jnucmat.2019.05.047
[12] Huang Yuhui, Ouyang Yuqing, Weng Shuo, et al. Effect of loading mode on fracture behavior of CrNiMoV steel welded joint in simulated environment of low pressure nuclear steam turbine[J]. Engineering Fracture Mechanics, 2018, 205: 81 − 93.
[13] Lu Z, Shoji T, Xue H, et al. Synergistic effects of local strain-hardening and dissolved oxygen on stress corrosion cracking of 316NG weld heat-affected zones in simulated BWR environments[J]. Journal of Nuclear Materials, 2012, 423(1): 28 − 39.
[14] Barella S, Bellogini M,.Boniardi M, et al Failure analysis of a steam turbine rotor[J]. Engineering Failure Analysis, 2011, 18(6): 1511 − 1519. doi: 10.1016/j.engfailanal.2011.05.006
[15] 王坤, 黄树红, 叶渝怀, 等. 125 MW汽轮机转子的启停调峰试验研究[J]. 华中科技大学学报(自然科学版), 2000, 28(4): 105 − 107. Wang Kun, Huang Shuhong, Ye Yuhuai, et al. Experimental study on starting and stopping peak shaving of 125 MW steam turbine rotors[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2000, 28(4): 105 − 107.
[16] Shankar V, Valsan M, Bhanu Sankara Rao M, et al. Low cycle fatigue behavior and microstructural evolution of modified 9Cr-1Mo ferritic steel[J]. Materials Science and Engineering:A, 2006, 437(2): 413 − 422.
[17] Roldán M, Leon-Gutierrez E, Fernández P, et al. Deformation behaviour and microstructural evolution of EUROFER97-2 under low cycle fatigue conditions[J]. Materials Characterization, 2019, 158: 109943. doi: 10.1016/j.matchar.2019.109943
[18] Hu X, Huang L, Yan W, et al. Microstructure evolution in CLAM steel under low cycle fatigue[J]. Materials Science and Engineering A, 2014, 607: 356 − 359.
[19] Wang D Q, Zhu M L, Xuan F Z. Correlation of local strain with microstructures around fusion zone of a Cr-Ni-Mo-V steel welded joint[J]. Materials Science and Engineering: A, 2017, 685: 205 − 212.
[20] Jürgens, Maria, Olbricht, et al. Low cycle fatigue and relaxation performance of ferritic–martensitic grade P92 steel[J]. Metals, 2019, 9(1): 99. doi: 10.3390/met9010099
[21] Song Wei, Liu Xuesong, Berto Filippo, et al. Low-cycle fatigue behavior of 10CrNi3MoV high strength steel and its undermatched welds[J]. Materials, 2018, 11(5): 661. doi: 10.3390/ma11050661
[22] Cui Kaixuan, Zhao Yanyun, Zhai Yutao, et al. Low cycle fatigue behavior of electron beam welded joint of CLAM steel at room temperature[J]. Fusion Engineering and Design, 2019, 149: 111297. doi: 10.1016/j.fusengdes.2019.111297
[23] Weng S, Huang Y H, Xuan F Z, et al. Enhanced galvanic corrosion phenomenon in the welded joint of NiCrMoV steel by low-cycle fatigue behavior[J]. Journal of the Electrochemical Society, 2019, 166(2): 270 − 283.
[24] Zheng C, Lü B, Zhang F, et al. Effect of secondary cracks on hydrogen embrittlement of bainitic steels[J]. Materials Science and Engineering: A, 2012, 547: 99 − 103.
[25] 卢叶茂, 梁益龙, 龙绍檑, 等. 马氏体板条控制单元对20CrNi2Mo钢韧性的影响[J]. 材料研究学报, 2018, 32(4): 290 − 300. doi: 10.11901/1005.3093.2017.301 Lu Yemao, Liang Yilong, Long Shaolei, et al. Effect of martensite lath control unit on the toughness of 20CrNi2Mo steel[J]. Chinese Journal of Materials Research, 2018, 32(4): 290 − 300. doi: 10.11901/1005.3093.2017.301
[26] Zhou T, Yu H, Wang S. Effect of microstructural types on toughness and microstructural optimization of ultra-heavy steel plate: EBSD analysis and microscopic fracture mechanism[J]. Materials Science and Engineering: A, 2016, 658: 150 − 158.
[27] Thomasle, Bruemmersm.High-resolution on characterization of intergranular attack and stress corrosion craking alloy 600 in high-temperature primary water[J].Corrosion, 2000,56(6):572 − 587.
-
期刊类型引用(6)
1. 冯消冰,王建军,王永科,陈苏云,刘爱平. 面向大型结构件爬行机器人智能焊接技术. 清华大学学报(自然科学版). 2023(10): 1608-1625 . 百度学术
2. 詹剑良,金浩哲. 六工位焊接电器盒系统设计. 机械制造文摘(焊接分册). 2022(02): 41-44 . 百度学术
3. 李建宇,倪川皓,江亚平,贾小磊. 高强钢小角度坡口深熔焊工艺. 机械制造文摘(焊接分册). 2022(05): 26-30 . 百度学术
4. 周利平,朵丛,韩永刚. 常见焊接接头的机器人焊接工艺设计. 科技视界. 2022(29): 101-103 . 百度学术
5. 刘云鸾,敖三三,罗震,相茜. 焊接与智能制造(下)——第25届北京·埃森焊接与切割展览会焊接国际论坛综述. 焊接技术. 2021(08): 1-3 . 百度学术
6. 洪妍,樊星. 北京·埃森焊接展之焊接智能化. 焊接技术. 2021(S1): 78-82 . 百度学术
其他类型引用(4)