高级检索

箱型钢结构焊接机器人系统构建及运动学建模

郭吉昌,朱志明,陈敏鹤,李秋宇

郭吉昌,朱志明,陈敏鹤,李秋宇. 箱型钢结构焊接机器人系统构建及运动学建模[J]. 焊接学报, 2018, 39(8): 32-37. DOI: 10.12073/j.hjxb.2018390196
引用本文: 郭吉昌,朱志明,陈敏鹤,李秋宇. 箱型钢结构焊接机器人系统构建及运动学建模[J]. 焊接学报, 2018, 39(8): 32-37. DOI: 10.12073/j.hjxb.2018390196
GUO Jichang, ZHU Zhiming, CHEN Minhe, LI Qiuyu. Structural design and kinematics modeling of welding robot system for box-type steel structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(8): 32-37. DOI: 10.12073/j.hjxb.2018390196
Citation: GUO Jichang, ZHU Zhiming, CHEN Minhe, LI Qiuyu. Structural design and kinematics modeling of welding robot system for box-type steel structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(8): 32-37. DOI: 10.12073/j.hjxb.2018390196

箱型钢结构焊接机器人系统构建及运动学建模

基金项目: 国家自然科学基金资助项目(51775301)

Structural design and kinematics modeling of welding robot system for box-type steel structure

  • 摘要: 针对箱型钢结构现场焊接施工中的自动化程度低、高空作业和接头质量稳定性不足等问题,设计了一款新型箱型钢结构全位置焊接机器人系统.在介绍机器人系统的结构设计方案和原理的基础上,根据箱型钢结构的结构特征,对其直拐角的焊接运动过程进行了详细的探讨,对其各种运动状态进行了基于Craig D-H模型的运动学建模和分析.针对焊接机器人在过渡运动过程中存在连杆偏距和关节角变量的问题,提出了一种额外引入中间坐标系的正运动学求解方法.结果表明,机器人系统的结构设计和参数选择合理,系统运动学建模及求解正确.
    Abstract: A novel all-position welding robot for box-type steel structure was devised in order to solve the problems of low degree of automation, high risk of work high above the ground and insufficient stability of weld joint quality in the field welding for box-type steel structure. After the structural design scheme and principle of welding robot system are introduced, the welding motion process at the right-angle corner of box-type steel structure is discussed in detail according to the structural characteristics of the box-type steel structure. Then, the kinematics modeling and analysis based on Craig D-H model were carried out for its various motion states. A new method of kinematics modeling and forward solving is proposed by means of introducing one additional intermediate coordinate system under the conditions of existing connecting rod offset and joint angle variable in the process of transition movement state of welding robot. The results of working space analysis of the welding robot system show that the structural design and parameters selection are reasonable and the forward kinematics solutions is correct.
  • [1] 邓勇军, 桂仲成, 盛仲曦, 等. 爬行式智能焊接机器人与应用试验研究[J]. 电焊机, 2013, 43(12):14-19 Deng Yongjun, Gui Zhongcheng, Sheng Zhongxi, et al. Research on a wall-climbing welding robot for the experimental application[J]. Electric Welding Machine, 2013, 43(12):14-19
    [2] Zeng H, Wang C, Yang X, et al. Automatic welding technologies for long-distance pipelines by use of all-position self-shielded flux cored wires[J]. Natural Gas Industry B, 2014, 1(1):113-118.
    [3] Yoshikawa K, Tanaka K. Welding robots for steel frame structures[J]. Computer-Aided Civil and Infrastructure Engineering, 2002, 12(1):43-56.
    [4] Nagata M, Baba N, Tachikawa H, et al. Steel frame welding robot systems and their application at the construction site[J]. Computer-Aided Civil and Infrastructure Engineering, 1997, 12(1):15-30.
    [5] 朱志明, 倪真, 马国锐, 等. 一种箱型钢结构轨道式全位置焊接机器人, 中国:201310201215.5[P]. 2015-05-20.
    [6] 朱志明, 马国锐, 刘晗, 等. 箱型钢结构焊接机器人系统机构设计与研究[J]. 焊接, 2014(3):2-7 Zhu Zhiming, Ma Guorui, Liu Han, et al. The structure design of box-type steel structure welding robot[J]. Welding & Joining, 2014(3):2-7
    [7] 朱志明, 马国锐, 郭吉昌, 等. 基于蒙特卡洛法的箱型钢结构焊接机器人工作空间分析[J]. 焊接, 2016(9):1-5 Zhu Zhiming, Ma Guorui, Guo Jichang, et al. Analysis of box-type steel structure welding robot workspace based on monte carlo method[J]. Welding & Joining, 2016(9):1-5
    [8] 朱志明, 郭吉昌, 马国锐, 等. 箱型钢结构焊接机器人运动学分析及轨迹规划[J]. 清华大学学报(自然科学版), 2017, 57(8):785-791 Zhu Zhiming, Guo Jichang, Ma Guorui, et al. Kinematics analysis and trajectory planning of welding robot for girth welding of box-type steel structure[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(8):785-791
    [9] Craig J J. Introduction to robotics:mechanics and control[J]. Automatica, 1987, 23(2):263-264.
    [10] 蔡自兴, 谢斌. 机器人学[M]. 北京:清华大学出版社, 2015.
  • 期刊类型引用(6)

    1. 周传昆,王伟,娄双涛,陆凯雷. 不锈钢薄板高频冷焊与TIG焊接头的性能对比. 热加工工艺. 2023(07): 122-124+129 . 百度学术
    2. 唐君才,陈和,魏占静. 304不锈钢K-TIG焊接工艺. 机械制造文摘(焊接分册). 2022(03): 37-40 . 百度学术
    3. 何建萍,吴鑫,吉永丰,卢飞. 100 μm超薄不锈钢板脉冲微束等离子弧焊成形机理. 焊接学报. 2021(06): 77-84+101-102 . 本站查看
    4. 高永. 海洋石油平台挡风墙不锈钢薄板焊接专用夹具. 石油工程建设. 2020(01): 75-77 . 百度学术
    5. 王钰,王凯,罗子艺,卢清华,杨景卫. 大功率激光焊接工艺对304不锈钢焊接接头组织和电化学行为的影响. 焊接. 2020(03): 17-23+65-66 . 百度学术
    6. 林晓辉,冷冰,方乃文,徐亦楠,马一鸣. 焊接热输入对节镍不锈钢MAG接头组织性能影响. 金属加工(热加工). 2020(10): 48-52 . 百度学术

    其他类型引用(9)

计量
  • 文章访问数:  815
  • HTML全文浏览量:  26
  • PDF下载量:  202
  • 被引次数: 15
出版历程
  • 收稿日期:  2017-10-28

目录

    /

    返回文章
    返回