高级检索

激光增强GMAW熔滴短路过渡行为分析

贾亚洲,陈树君,肖珺,王立伟

贾亚洲,陈树君,肖珺,王立伟. 激光增强GMAW熔滴短路过渡行为分析[J]. 焊接学报, 2018, 39(7): 51-54. DOI: 10.12073/j.hjxb.2018390174
引用本文: 贾亚洲,陈树君,肖珺,王立伟. 激光增强GMAW熔滴短路过渡行为分析[J]. 焊接学报, 2018, 39(7): 51-54. DOI: 10.12073/j.hjxb.2018390174
JIA Yazhou, CHEN Shujun, XIAO Jun, WANG Liwei. Laser enhanced short-circuiting metal transfer in GMAW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(7): 51-54. DOI: 10.12073/j.hjxb.2018390174
Citation: JIA Yazhou, CHEN Shujun, XIAO Jun, WANG Liwei. Laser enhanced short-circuiting metal transfer in GMAW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(7): 51-54. DOI: 10.12073/j.hjxb.2018390174

激光增强GMAW熔滴短路过渡行为分析

基金项目: 国家自然科学基金青年基金项目(5150050906);北京市自然科学基金资助项目(51575133);国家自然科学基金面上项目(3162004)

Laser enhanced short-circuiting metal transfer in GMAW

  • 摘要: 高能量密度的激光照射熔滴,使熔滴局部产生强烈蒸发,利用蒸发反力驱动熔滴受迫短路,促进熔滴脱离焊丝.以低碳钢为研究对象,搭建激光增强GMAW短路过渡焊接试验系统,对比研究了激光增强GMAW短路过渡焊接过程中激光入射位置、电弧高度对熔滴短路过渡行为的影响规律.结果表明,在焊接过程中施加一定功率的激光对熔滴短路过渡行为有明显的改善作用,可以通过激光改变熔滴的受力状态,控制过渡熔滴的尺寸,熔滴短路时间减小,燃弧时间增加,增加过渡频率,提高了焊接过程中的稳定性,激光增强后,焊缝表面成形均匀饱满,焊缝成形良好.
    Abstract: The high energy density of the laser beam irradiated the droplet to make it be subjected to local strong evaporation, and the laser recoil force was used to drive the droplet to be forced short circuit, which promoted the droplet to be detached from the wire. Taking the mild steel as the research object and using the high speed camera equipment, the laser enhanced GMAW short circuiting transfer welding test system was built. The influence of laser incident position and arc height on the transfer behavior of droplet short circuit in GMAW short circuiting transfer welding process were studied. The results show that the laser has a significant effect on the short circuiting transfer behavior of the droplet during the welding process. The force state of the droplet can be changed, which can control the size of the droplet. The droplet short circuiting time decreases, while the arcing time and transfer frequency increase, which improves the stability of the welding process. After the laser is applied, the metal transfer is much more frequent and robust. The bead formation looks fine and uniform.
  • [1] 常云龙, 刘晓龙, 路林, 等. 短路过渡2焊研究现状及展望[J]. 焊接技术, 2013(3):1-5. Chang Yunlong, Liu Xiaolong, Lu Lin, et al. Research status and prospect of short-circuiting CO_2 gas-shielded arc welding[J]. Welding Technology, 2013,03:1-5+5.[DOI: 10.3969/j.issn.1002-025X.2013.03.001]
    [2] 朱成华, 许先果, 姚宗湘, 等. CO2气体保护焊熔滴短路过渡特性的研究现状与展望[J]. 电焊机, 2004(12):48-51 Zhu Chenghua, Xu Xianguo, Yao Zongxiang, et al. Development of CO2 gas shielded droplet short-circuit transfer arc welding[J]. Electric Welding Machine, 2004, 12:48-51.[DOI: 10.3969/j.issn.1001-2303.2004.12.016]
    [3] 朱志明, 吴文楷, 陈强. 短路过渡CO2接熔滴尺寸控制[J]. 焊接学报, 2007, 28(04):1-4. Zhu Zhiming, Wu Wenkai, Chen Qiang. Molten droplet size control in short-circuiting CO2 arc welding[J]. Transactions of the China Welding Institution, 2007,28(04):1-4.[DOI: 10.3321/j.issn:0253-360X.2007.04.001]
    [4] 韦辉亮, 李桓, 王旭友, 等. 激光-MIG电弧的复合作用及对熔滴过渡的影响[J]. 焊接学报, 2011, 32(11):41-44. Wei Huiliang, Li Heng, Wang Xuyou, et al. Hybrid interaction of laser and pulsed MIG arc and its influence on metal transfer[J]. Transactions of the China Welding Institution, 2011, 32(11):41-44.
    [5] 刘黎明, 黄瑞生, 曹运明. 低功率YAG激光-熔化极气体弧焊复合焊接电弧等离子体行为研究[J].中国激光, 2009, 36(12):3167-3173. Liu Liming, Huang Ruisheng, Cao Yunming. Behavior analysis of low power yag laser-gas metal arc welding hybrid welding arc plasma[J]. Chinese J. Lasers, 2009, 36(12):3167-3173.
    [6] 朱加雷, 焦向东, 乔溪, 等. 激光增强GMAW焊接熔滴过渡控制试验[J]. 焊接学报, 2014, 35(8):21-24, 29. Zhu Jialei, Jiao Xiangdong, Qiao Xi, et al. Experiment on metal transfer control of laser enhanced GMAW welding[J]. Transactions of the China Welding Institution, 2014, 35(8):21-24+29.
    [7] 肖珺. 基于脉冲激光与电弧力调控的GMAW熔滴过渡主动控制[D]. 哈尔滨:哈尔滨工业大学, 2014.
    [8] X. Chen, H. X. Wang. A calculation model for the evaporation recoil pressure in laser material processing[J]. Journal of Physics:Applied Physics. 2001, 34:2637-2642.
  • 期刊类型引用(20)

    1. 李碧晗,王亦奇,汪瑞军. 微弧离子沉积技术研究现状与应用进展. 焊接. 2025(02): 55-65 . 百度学术
    2. 王明伟,高磊,郭昊亮,张文超. 纳米碳化钨涂层电火花沉积工艺参数试验研究. 热加工工艺. 2024(18): 74-78 . 百度学术
    3. 李梦楠,韩红彪,李世康,侯玉杰. 旋转电极接触力对电火花沉积放电过程参数和材料转移的影响. 焊接学报. 2023(01): 71-77+132-133 . 本站查看
    4. 李忠盛,吴护林,陈海涛,丛大龙,张敏,何庆兵,彭冬. 钢表面电火花沉积合成W-Mo高熔点复合涂层. 表面技术. 2023(10): 250-258 . 百度学术
    5. 张孟卓,姚利松,何星. 电火花沉积在金属耐磨防腐领域的应用研究进展. 材料保护. 2023(11): 102-117 . 百度学术
    6. 王彦芳,潘辰妍,石志强,何艳玲,韩彬. 块体高熵非晶合金的制备与表征综合实验教学探索与实践. 实验技术与管理. 2022(04): 142-146 . 百度学术
    7. 郝丽敏,葛志宏,都宇. 内圆表面的电火花合金化强化修复装置研究. 现代制造工程. 2022(06): 63-67+84 . 百度学术
    8. 何艳玲,王彦芳,斯佳佳,石志强. 电火花沉积Invar/非晶复合涂层的组织与性能. 金属热处理. 2022(11): 238-244 . 百度学术
    9. 田芳,纪秀林,严春妍,赵建华. 循环气压结合超声辅助封孔剂封孔处理对铁基非晶合金涂层摩擦磨损性能的影响. 腐蚀与防护. 2022(11): 1-6+53 . 百度学术
    10. 张勇,李丽,常青,王晓明,赵阳,朱胜,徐安阳,高宪伟. 电火花沉积技术研究现状与展望. 表面技术. 2021(01): 150-161 . 百度学术
    11. 高继文,李永彬,黄晓望. 超声波冲击法对微弧火花沉积涂层性能的影响. 焊接. 2021(02): 52-56+64 . 百度学术
    12. 王顺,童金钟,韩红彪. 一种电火花沉积接触力自动控制装置和沉积试验. 焊接学报. 2021(03): 42-47+100 . 本站查看
    13. 王顺,韩红彪,李世康,李梦楠. 基于正交试验的圆柱电极参数对电火花沉积质量影响分析. 焊接学报. 2021(07): 37-43+100 . 本站查看
    14. 刘宇,刘国良,苏全宁,曲嘉伟,王紫光,张生芳. 钛合金表面电火花沉积NiCr-3涂层性能的工艺规律研究. 电加工与模具. 2021(06): 26-30 . 百度学术
    15. 赵航,高畅,伍晓宇,徐斌,雷建国. 超声辅助电火花粉末沉积WC-Ni金属陶瓷涂层的微观结构及摩擦学性能. 机械工程学报. 2021(23): 252-261 . 百度学术
    16. 张建斌,张雷雷,刘航,容煜,焦凯,石玗. 电火花沉积修复铝合金组织与可降解性能. 表面技术. 2020(10): 224-232 . 百度学术
    17. 葛志宏,邓静. 用于回转体外表面的电火花强化修复装置研究. 电加工与模具. 2020(06): 29-31+47 . 百度学术
    18. 王彦芳,闫晗,李娟,孙胜越,宋增金,石志强. 电火花沉积FeCoCrNiCu高熵合金涂层的组织结构与耐蚀性. 表面技术. 2019(06): 144-149 . 百度学术
    19. 马焰议,王海燕,张宇鹏,易耀勇,董福宇. Zr_(67.8)Cu_(24.7)Al_(3.43)Ni_(4.07)非晶合金激光焊接晶化控制及组织性能分析. 焊接学报. 2019(12): 138-142+167 . 本站查看
    20. 钟鹏,司爽爽,宋增金,孙旭,石志强,王彦芳. 工艺参数对电火花沉积非晶层表面质量的影响. 热加工工艺. 2018(18): 125-128 . 百度学术

    其他类型引用(10)

计量
  • 文章访问数:  783
  • HTML全文浏览量:  6
  • PDF下载量:  56
  • 被引次数: 30
出版历程
  • 收稿日期:  2017-01-30

目录

    /

    返回文章
    返回