高级检索

低活化铁素体/马氏体钢厚板光纤激光焊接接头组织及力学性能分析

张建超1,乔俊楠1,吴世凯1,廖洪彬2,王晓宇2

张建超1,乔俊楠1,吴世凯1,廖洪彬2,王晓宇2. 低活化铁素体/马氏体钢厚板光纤激光焊接接头组织及力学性能分析[J]. 焊接学报, 2018, 39(4): 124-128. DOI: 10.12073/j.hjxb.2018390109
引用本文: 张建超1,乔俊楠1,吴世凯1,廖洪彬2,王晓宇2. 低活化铁素体/马氏体钢厚板光纤激光焊接接头组织及力学性能分析[J]. 焊接学报, 2018, 39(4): 124-128. DOI: 10.12073/j.hjxb.2018390109
ZHANG Jianchao1, QIAO Junnan1, WU Shikai1, LIAO Hongbin2, WANG Xiaoyu2. Microstructure and mechanical properties of fiber laser welded joints of reduced activation ferritic/martensitic CLF-1 steel heavy plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 124-128. DOI: 10.12073/j.hjxb.2018390109
Citation: ZHANG Jianchao1, QIAO Junnan1, WU Shikai1, LIAO Hongbin2, WANG Xiaoyu2. Microstructure and mechanical properties of fiber laser welded joints of reduced activation ferritic/martensitic CLF-1 steel heavy plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 124-128. DOI: 10.12073/j.hjxb.2018390109

低活化铁素体/马氏体钢厚板光纤激光焊接接头组织及力学性能分析

Microstructure and mechanical properties of fiber laser welded joints of reduced activation ferritic/martensitic CLF-1 steel heavy plate

  • 摘要: 针对核聚变反应堆试验包层模块(TBM)中使用的CLF-1低活化铁素体/马氏体钢进行焊接试验,采用15 kW光纤激光,实现了17.5 mm厚CLF-1钢的穿透焊接,得到了正反表面成形良好、无明显缺陷的焊接接头,并对接头显微组织及力学性能进行了分析研究. 结果表明,焊缝区主要为粗大的板条马氏体;熔合线附近热影响区为细小的板条马氏体和少量贝氏体;不完全淬火区为经焊接热循环作用下二次回火的回火索氏体及马氏体双相组织;接头室温及550 ℃高温抗拉强度较高,均断裂于母材;焊缝显微硬度高于母材,且热影响区无明显软化;接头冲击韧性良好. 接头综合力学性能良好.
    Abstract: The reduced activation ferritic/martensitic CLF-1 steel used in the nuclear fusion reactor test blanket module (TBM) is welded by 15 kW fiber laser, and the penetration welding of 17.5 mm thick CLF-1 steel is realized. A sound joint forming can be obtained by optimizing the process parameters, and there are no obvious defects such as cracks and pores within the welded joint. Furthermore, the microstructure and mechanical properties of the welded joints are analyzed. The experiment results show that the microstructure of the weld mainly contains the thick lath martensite. The microstructure of the heat affected zone mainly contains the tempered sorbate and martensite dual phase structure caused by secondary tempering of welding thermal. At the average room temperature and 550 ℃, tensile strength of welded joint is very high. The fracture position is located at the base metal. The microhardness of the weld is significantly higher than that of base metal, and there is no obvious soft zone at the heat affected zone. The weld joints exhibit favorable impact toughness, so it has very good comprehensive mechanical properties.
  • [1] 黄群英, 郁金南, 万发荣, 等. 聚变堆低活化马氏体钢的发展[J]. 核科学与工程, 2004, 24(1): 56-64.Huang Qunying, Yu Jinnan, Wan Farong, et al. The development of low activation martensitic steels for fusion reactor[J]. Chinese Journal of Nuclear Science and Engineering, 2004, 24(1): 56-64.[3] 姜志忠, 黄继华, 陈树海, 等. 聚变堆用CLAM钢电子束焊接接头显微组织转变与力学性能[J]. 焊接学报, 2011, 32(3): 45-48.Jiang Zhizhong, Huang Jihua, Chen Shuhai, et al. Microstructure transformation and mechanical properties of electron beam welded joints of fusion CLAM steel[J]. Transactions of the China Welding Institution, 2011, 32(3): 45-48.[3] 姜志忠, 黄继华, 胡 杰, 等. 聚变堆用CLAM钢激光焊接接头显微组织及性能[J]. 焊接学报, 2012, 33(2): 5-8.Jiang Zhizhong, Huang Jihua, Hu Jie, et al. Microstructure and mechanical properties of laser welded joints of CLAM steel used for fusion reactor[J]. Transactions of the China Welding Institution, 2012, 33(2): 5-8.[4] 胡 杰, 姜志忠, 黄继华, 等. 热处理工艺对CLAM钢电子束焊缝显微组织与冲击韧性的影响[J]. 焊接学报, 2012, 33(11): 67-71.Hu Jie, Jiang Zhizhong, Huang Jihua, et al. Effects of heat treatment processes on microstructure and impact toughness of weld metal of vacuum electron beam welding on CLAM steel[J]. Transactions of the China Welding Institution, 2012, 33(11): 67-71.[5] Chen S H, Huang J H, Lu Q, et al. Microstructures and mechanical properties of laser welding joint of a CLAM steel with revised chemical compositions[J]. Journal of Materials Engineering and Performance, 2016, 25(5): 1848-1855.[6] Zhou X S, Dong Y T, Liu C X, et al. Transient liquid phase bonding of CLAM/CLAM steels with Ni-based amorphous foil as the interlayer[J]. Materials & Design, 2015, 88: 1321-1325.[7] Poitevin Y, Aubert P, Diegele E, et al. Development of welding technologies for the manufacturing of European Tritium Breeder blanket modules[J]. Journal of Nuclear Materials, 2011, 417(1): 36-42.[8] Commin L, Rieth M, Widak V, et al. Characterization of ODS (oxide dispersion strengthened) Eurofer/Eurofer dissimilar electron beam welds[J]. Journal of Nuclear Materials, 2013, 442(1): S552-S556.[9] Sawai T, Shiba K, Hishinuma A. Microstructure of welded and thermal-aged low activation steel F82H IEA heat[J]. Journal of Nuclear Materials, 2000, 283: 657-661.[10] 乔建生, 赵 飞, 黄依娜, 等. CLAM钢的钨极氩弧焊及焊接后的结构与性能[J]. 核科学与工程, 2008, 28(4): 354-361.Qiao Jiansheng, Zhao Fei, Huang Yina, et al. The microstructure and mechanical properties of China low activation martensitic steel joined by tungsten inert gas welding[J]. Chinese Journal of Nuclear Science and Engineering, 2008, 28(4): 354-361.[11] 沈 政, 陈希章, 雷玉成, 等. CLAM钢等离子焊接接头组织与性能[J].上海交通大学学报, 2010, 44(S1): 171-174.Shen Zheng, Chen Xizhang, Lei Yucheng, et al. Microstructure and mechanical properties of clam steel joined by plasma arc welding[J]. Journal of Shanghai Jiaotong University, 2010, 44(S1): 171-174.[12] 陈 路, 王泽明, 陶海燕, 等. CLF-1低活化铁素体/马氏体钢真空电子束焊接研究[J]. 焊接技术, 2014, 43(5): 26-29.Chen Lu, Wang Zeming, Tao Haiyan, et al. Reserach on electron beam welding for CLF-1 reduced activation ferritic/martensitic steel[J]. Welding Technology, 2014, 43(5): 26-29.[13] 张志云. CLF-1低活化马氏体钢的真空扩散焊研究[D]. 济南: 山东大学, 2012.
  • 期刊类型引用(11)

    1. 林杨,张震,宋汝晖,胡佑斌,柳召芹,鲍劼,娄玉新,任远,成巍,吴世凯. 20 mm厚42CrMo钢光纤激光焊接工艺及接头组织性能. 应用激光. 2024(10): 111-119 . 百度学术
    2. 缑俊,王平怀,朱小波,王长浩,胡丹,邱嵘,廖洪彬,谌继明. 低活化铁素体/马氏体钢CLF-1激光焊接模式转变研究. 核聚变与等离子体物理. 2023(01): 88-93 . 百度学术
    3. 陈挥扬,卓理政,崔运佳,张龙强,王运喜. 核电领域激光焊接技术的研究与应用现状. 电焊机. 2023(07): 81-89 . 百度学术
    4. 张国瑜,徐诺,徐国建,李午红,邱晓杰. 核聚变用CLF-1钢真空激光焊接. 沈阳工业大学学报. 2023(05): 527-533 . 百度学术
    5. 蒋宝,黄瑞生,雷振,曹浩,孙谦. 中厚钢板万瓦级光纤激光焊接技术研究现状. 机械制造文摘(焊接分册). 2022(02): 11-18 . 百度学术
    6. 徐国建,井志成,张国瑜,刘祥宇,廖洪彬. 激光焊接核电用CLF-1钢的组织与性能. 沈阳工业大学学报. 2022(03): 277-282 . 百度学术
    7. 刘鑫泉,方超,刘劲,宋奎晶,季雨凯,韦勇,罗俊睿. 增材制造RAFM钢激光焊接头显微组织分析. 焊接学报. 2022(09): 44-49+115 . 本站查看
    8. 蒋宝,黄瑞生,雷振,曹浩,孙谦. 中厚钢板万瓦级光纤激光焊接技术研究现状. 焊接. 2020(02): 42-48+67-68 . 百度学术
    9. 蒋宝,雷振,黄瑞生,杨义成,梁晓梅. 万瓦级光纤激光-MAG复合焊接焊缝成形. 焊接. 2020(06): 5-11+32+61 . 百度学术
    10. 吴世凯,张建超,廖洪彬,王晓宇. 聚变堆低活化铁素体/马氏体(RAFM)钢焊接研究进展. 机械工程学报. 2019(02): 195-203 . 百度学术
    11. 宫唤春. 视觉传感技术在大功率光纤激光焊接焊缝宽度特征提取的应用. 激光杂志. 2019(04): 158-160 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  835
  • HTML全文浏览量:  4
  • PDF下载量:  4
  • 被引次数: 15
出版历程
  • 收稿日期:  2016-10-08

目录

    /

    返回文章
    返回