高级检索

钛与低碳钢的电阻点焊

邱然锋1,2,李青哲1,石红信1,2,里中忍3

邱然锋1,2,李青哲1,石红信1,2,里中忍3. 钛与低碳钢的电阻点焊[J]. 焊接学报, 2018, 39(4): 45-48. DOI: 10.12073/j.hjxb.2018390093
引用本文: 邱然锋1,2,李青哲1,石红信1,2,里中忍3. 钛与低碳钢的电阻点焊[J]. 焊接学报, 2018, 39(4): 45-48. DOI: 10.12073/j.hjxb.2018390093
QIU Ranfeng1,2, LI Qingzhe1, SHI Hongxin1,2, SATONAKA Shinobu3. Resistance spot welding of titanium and mild steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 45-48. DOI: 10.12073/j.hjxb.2018390093
Citation: QIU Ranfeng1,2, LI Qingzhe1, SHI Hongxin1,2, SATONAKA Shinobu3. Resistance spot welding of titanium and mild steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 45-48. DOI: 10.12073/j.hjxb.2018390093

钛与低碳钢的电阻点焊

Resistance spot welding of titanium and mild steel

  • 摘要: 采用电阻点焊方法对纯钛与低碳钢Q235进行焊接试验,利用扫描电子显微镜观察分析了熔核区组织特性,探讨了焊接电流对熔核尺寸和抗剪载荷的影响. 结果表明,受焦耳热的影响熔核直径随焊接电流的增加而增加,抗剪载荷则随焊接电流的增大而呈先升后降的变化趋势,焊接电流为8 kA时所得接头的抗剪载荷最大,约2.85 kN. 在钢侧熔核区观察到了靠近钢侧厚度约为30~50 μm的TiFe2+α-Fe共晶组织层和粗大TiFe柱状晶;钛侧熔核区主要由靠近钛侧约12 μm厚的TiFe+α-Ti共晶组织层和TiFe柱状晶构成,且观察到了宏观分层现象.
    Abstract: Pure titanium and mild steel Q235 sheets were welded by resistance spot welding. The nugget microstructure was observed and analyzed by using scanning electron microscopy. The effects of welding current on nugget size and tensile shear load of the joint were investigated. With the increasing of welding current, the nugget diameter increased while the tensile shear load of joint increased and then decreased when welding current was over 8 kA. A tensile shear load of a maximum of 2.85 kN was obtained at a welding current of 8 kA. The nugget of steel side was mainly composed of a 30~50 μm thick TiFe2+α-Fe eutectic structure layer adjacent steel and coarser TiFe columnar crystals. An approximately 12 μm thick TiFe+α-Ti eutectic structure layer adjacent titanium and TiFe columnar crystals were observed in the nugget zone of titanium side where macro stratification was also observed.
  • [1] 冯吉才, 王 廷, 张秉刚, 等. 异种材料真空电子束焊接研究现状分析[J]. 焊接学报, 2009, 30(10): 108-112.Feng Jicai, Wang Ting, Zhang Binggang, et al. Research status analysis of electron beam welding for joining of dissimilar materials[J]. Transaction of the China Welding Institution, 2009, 30(10): 108-112.[2] Wang Ting, Zhang Binggang, Feng Jicai, et al. Effect of a copper filler metal on the microstructure and mechanical properties of electron beam welded titanium-stainless steel joint[J]. Materials Characterization, 2012, 73(12): 104-113.[3] Yuan X J, Shen G M, Qin B. Impulse pressuring diffusion bonding of titanium alloy to stainless steel[J]. Materials Characterization, 2008, 59(7): 930-936.[4] 赵东升, 闫久春, 黄震宇, 等. 钛合金与不锈钢真空热轧连接界面微观结构及性能[J]. 焊接学报, 2016, 37(12): 53-56.Zhao Dongsheng, Yan Jiuchun, Huang Zhenyu, et al. Interfacial microstructure of hot roll bonded joints of titanium alloy to stainless steel[J]. Transaction of the China Welding Institution, 2016, 37(12): 53-56.[5] Manikandana P, Hokamotob K, Fujita M, et al. Control of energetic conditions by employing interlayer of different thickness for explosive welding of titanium/304 stainless steel[J]. Journal of Materials Processing Technology, 2008, 195(1-3): 232-240.[6] Qiu R F, Satonaka S, Iwamoto C. Effect of interfacial reaction layer continuity on the tensile strength of resistance spot welded joints between aluminum alloy and steels[J]. Materials and Design, 2009, 30(9): 3686-3689.[7] 李永兵, 林忠钦, 来新民, 等. 电阻点焊熔核形成过程磁流体动力学分析[J]. 焊接学报, 2006, 27(7): 41-44.Li Yongbing, Lin Zhongqin, Lai Xinmin, et al. Analysis of nugget formation process in resistance spot welding based on magnetic fluid dynamics theory[J]. Transactions of the China Welding Institution, 2006, 27(7): 41-44.[8] Qiu R, Wang N, Shi H, et al. Non-parametric effects on pore formation during resistance spot welding of magnesium alloy[J]. Science and Technology of Welding and Joining, 2014, 19(3): 231-234.[9] 梁基谢夫. 金属二元系相图手册[M]. 北京: 化学工业出版社, 2008.
  • 期刊类型引用(9)

    1. 贾剑平,李田雨,詹志平,姜喜铭. Cu对铝/钢CMT熔钎焊接头界面区组织的影响研究. 热加工工艺. 2024(03): 57-61 . 百度学术
    2. 张旭东,方晓明. 白车身激光钎焊检查与返修方法. 汽车工艺与材料. 2021(02): 20-25 . 百度学术
    3. 高恺,刘桂奇,李坤,朱刘博,顾红历. Q235钢与5052铝合金感应-静压焊接头界面微观组织和力学性能. 焊接学报. 2021(11): 35-42+99 . 本站查看
    4. 吴永亮,顾丽霞,罗立峰. Al-Cu合金片对钢/铝异种金属激光-MIG复合焊接头组织和性能的影响. 机械工程材料. 2020(03): 1-7+12 . 百度学术
    5. 李军兆,刘一搏,孙清洁,陶玉洁,张清华,靳鹏,冯吉才. 激光摆动模式对铝/钢焊接接头成形特征及组织、强度的影响. 中国激光. 2020(04): 141-148 . 百度学术
    6. 贾剑平,詹志平. 铝钢熔钎焊工艺及腐蚀性能研究进展. 热加工工艺. 2020(11): 1-5 . 百度学术
    7. 郭柏征,闫德俊,董红刚. 5083铝合金/E36钢熔钎焊接头组织及力学性能. 焊接. 2020(03): 29-34+66 . 百度学术
    8. 李伦坤,高晓龙,刘晶,王小强,刘欢,余浩魁. 铝/钢异种金属熔钎焊技术发展现状. 宝鸡文理学院学报(自然科学版). 2019(03): 49-54 . 百度学术
    9. 张洋,郭玉奇,曹雅彬,齐海波. 铝/钢金属超声波辅助激光熔钎焊组织及性能. 焊接. 2019(09): 14-19+66 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  996
  • HTML全文浏览量:  13
  • PDF下载量:  3
  • 被引次数: 11
出版历程
  • 收稿日期:  2016-10-08

目录

    /

    返回文章
    返回