高级检索

基于神经网络的焊机参数预测方法

杨亚超,全惠敏,邓林峰,赵振兴

杨亚超,全惠敏,邓林峰,赵振兴. 基于神经网络的焊机参数预测方法[J]. 焊接学报, 2018, 39(1): 32-36. DOI: 10.12073/j.hjxb.2018390008
引用本文: 杨亚超,全惠敏,邓林峰,赵振兴. 基于神经网络的焊机参数预测方法[J]. 焊接学报, 2018, 39(1): 32-36. DOI: 10.12073/j.hjxb.2018390008
YANG Yachao, QUAN Huimin, DENG Linfeng, ZHAO Zhenxing. Prediction method of welding machine parameters based on neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(1): 32-36. DOI: 10.12073/j.hjxb.2018390008
Citation: YANG Yachao, QUAN Huimin, DENG Linfeng, ZHAO Zhenxing. Prediction method of welding machine parameters based on neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(1): 32-36. DOI: 10.12073/j.hjxb.2018390008

基于神经网络的焊机参数预测方法

Prediction method of welding machine parameters based on neural network

  • 摘要: 针对脉冲MIG焊参数众多,不易调节的特点,提出了一种基于神经网络的焊机参数预测方法. 该方法采用LM(levenberg-marquarlt)算法建立了焊机参数的BP(back propagation)神经网络模型,充分利用已知的理想数据对网络进行训练,实现了焊接过程中任一给定焊接电流状态下焊机输出参数的预测;利用焊接参数的预测值分别对单、双脉冲MIG焊进行了试焊. 结果表明,基于神经网络的焊机参数预测方法精度较高,焊接过程稳定,焊缝成形美观,能够实现良好的一元化调节.
    Abstract: In view of the fact that pulse MIG welding has many parameters and is difficult to adjust, a welding parameter prediction method based on neural network is proposed. This method, having established BP neural network model of welding parameters by adopting LM(levenberg-marquarlt) algorithm, and making full use of the known data to train the network, have realized the prediction of the output parameters in any given welding current state, and then conduct test weld on single and double pulse MIG welding respectively by using the predicted values of welding parameters. The results show that the prediction method of welding parameters based on neural network is of high accuracy, that the welding process is stable, and that the seams can be well-formed, thus achieving a good unified adjustment.
  • [1] Sen M, Mukherjee M, Pal T K. Evaluation of correlations between DP-GMAW process parameters and bead geometry[J]. Welding Journal, 2015, 94(8): 265s-279s.[2] Jie Y I, CAO S, LI L,et al. Effect of welding current on morphology and microstructure of Al alloy T-joint in double-pulsed MIG welding[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(10): 3204-3211.[3] 林 放, 黄文超, 陈小峰, 等. 基于局部牛顿插值的数字化焊机参数自调节算法[J]. 焊接学报, 2011, 32(3): 33-36.Lin Fang, Huang Wenchao, Chen Xiaofeng,et al. Digitial welder parameters self-regulating algorithm based on partial Newton interPolation[J]. Transactions of the China Welding Insititution, 2011, 32(3): 33-36.[4] 薛家祥, 姜乘风, 张晓莉, 等. 基于最小二乘法的脉冲 MIG 焊参数一元化调节[J]. 焊接学报, 2014, 35(8): 75-78.Xue Jiaxiang, Jiang Chengfeng, Zhang Xiaoli,et al. Research on unified adjustment of pulsed MIG welding parameters based on least squares method[J]. Transactions of the China Welding Insititution, 2014, 35(8): 75-78.[5] 黄文超, 熊丹枫, 薛家祥. 铝硅合金双脉冲MIG焊专家数据库[J]. 焊接技术, 2009, 38(11): 43-46.Huang Wenchao, Xiong Danfeng, Xue Jiaxiang. Study on expert database of double pulse MIG welding for Al-Si alloy[J]. Welding Technology, 2009, 38(11): 43-46.[6] 陈小峰, 林 放, 魏仲华, 等. 基于数学建模的铝合金双脉冲MIG焊专家数据库设计[J]. 焊接学报, 2011, 32(5): 37-40.Cheng Xiaofeng, Lin Fang, Wei Zhonghua,et al. Double-pulsed MIG expert database based on mathematical modeling[J]. Transactions of the China Welding Insititution, 2011, 32(5): 37-40.[7] 刘 倩. 基于人工神经网络的电池容量预测[J]. 武汉理工大学学报, 2006, 28(3): 28-31.Liu Qian. Estimation for SOC of MH/Ni battery based on artificial neural network[J]. Journal of Wuhan University of Technology, 2006, 28(3): 28-31.
  • 期刊类型引用(14)

    1. 陈玉龙,别渭毅,鲁军,杨盼盼,张力. 超薄板脉冲激光焊接工艺特性及成形质量控制. 航天制造技术. 2024(01): 38-42 . 百度学术
    2. 张鑫源,孙振邦. 能量配比对铝合金激光-MIG复合焊接残余应力的影响. 焊接. 2024(06): 47-53 . 百度学术
    3. 赵轩. 激光加工在电梯钣金件制造领域中的应用. 中国电梯. 2024(11): 70-73 . 百度学术
    4. 张景祺,相志磊,王细波,雷永平,林健. 超薄板焊后波浪变形的形成原因及控制方法探讨. 机械工程学报. 2022(04): 72-79 . 百度学术
    5. 陆国强,赵航,吴馥云. 基于激光光栅载波技术的微位移测量方法. 激光杂志. 2022(04): 65-69 . 百度学术
    6. 张曌,李嘉宁. 激光精密加工成型技术及产业化应用. 中国铸造装备与技术. 2022(03): 16-22 . 百度学术
    7. 何建萍,吴鑫,吉永丰,卢飞. 100 μm超薄不锈钢板脉冲微束等离子弧焊成形机理. 焊接学报. 2021(06): 77-84+101-102 . 本站查看
    8. 黄波,王旺,王佳,李轩,何庆中,左超. 全焊接球阀焊接残余应力及变形数值模拟. 油气储运. 2021(08): 895-902 . 百度学术
    9. 王钰,王凯,罗子艺,卢清华,杨景卫. 大功率激光焊接工艺对304不锈钢焊接接头组织和电化学行为的影响. 焊接. 2020(03): 17-23+65-66 . 百度学术
    10. 钱伟,蒋明. 数字图像相关方法中数字散斑场的制作与应用研究. 液晶与显示. 2020(08): 861-869 . 百度学术
    11. 火巧英,闫海宁,涂本荣,陆安进. 焊接工艺参数对Q345NQR2耐候钢激光焊焊缝成形的影响. 焊接技术. 2020(08): 16-18+105-106 . 百度学术
    12. 王旺,王佳,曹修全,何庆中,刘惺. Q235钢等离子熔覆的残余应力及变形数值模拟. 特种铸造及有色合金. 2020(09): 975-979 . 百度学术
    13. 吴承隆,尹浩,黄泽涵. GH4169镍基高温合金脉冲激光焊工艺参数优化. 工具技术. 2020(10): 38-42 . 百度学术
    14. 朱国仁,庞立林,朱慨迅,杨明,王洪潇. 预拉伸对不锈钢电阻点焊接头疲劳寿命的影响. 焊接. 2020(11): 1-4+61 . 百度学术

    其他类型引用(15)

计量
  • 文章访问数:  758
  • HTML全文浏览量:  17
  • PDF下载量:  2
  • 被引次数: 29
出版历程
  • 收稿日期:  2016-07-10

目录

    /

    返回文章
    返回