[1] |
Susmel L. Multiaxial notch fatigue: from nominal to local stress-strain quantities[M]. Cambridge, UK: Woodhead Publishing Limited, 2009.[2] Maddox S J. Influence of tensile residual stresses on the fatigue behavior of welded joints in steel[C]∥ASTM. Residual Stress Effects in Fatigue. West Conshohocken: ASTM Special Technical Publication, 1982: 63-96[3] Teng T L, Fung C P, Chang P H. Effect of residual stresses on the fatigue of butt joints using thermal elasto-plastic and multiaxial fatigue theory[J]. Engineering Failure Analysis, 2003, 10(2): 131-151.[4] Fatemi A, Socie D F. A critical plane approach to multiaxial fatigue damage including out-of-Phase loading[J]. Fatigue & Fracture of Engineering Materials & Structures, 1988, 11(3): 149-165.[5] Papadopoulos I V, Davoli P, Gorla C,et al. A comparative study of multiaxial high-cycle fatigue criteria for metals[J]. International Journal of Fatigue, 1997, 19(3): 219-235.[6] Varvani-Farahani A. A new energy-critical plane parameter for fatigue life assessment of various metallic materials subjected to in-phase and out-of-phase multiaxial fatigue loading conditions[J]. International Journal of Fatigue, 2000, 22(4): 295-305.[7] Flavenot J F, Skalii N. A comparison of multiaxial fatigue criteria incorporating residual stress effects[C]∥EGF3. Biaxial and Multiaxial Fatigue. London: Mechanical Engineering Publications, 1989: 437-457.[8] Hobbacher A. Recommendations for fatigue design of welded joints and components[M]. West Berlin: Springer International Publishing, 2016.[9] Anon.Eurocode 3: design of steel structures-part 1-9: Fatigue[S]. London: Woodhead Publishing Limited, 2003.[10] 刘 刚, 黄一, 赵一阳. 基于临界面理论的焊接结构多轴疲劳寿命评估方法[J]. 船舶力学, 2013, 17(5): 494-501.Liu Gang, Huang Yi, Zhao Yiyang. Approach for multiaxial fatigue life assessment of welded structures based on critical plane theory[J]. Journal of Ship Mechanics, 2013, 17(5): 494-501.[11] Yousefi F, Witt M, Zenner H. Fatigue strength of welded joints under multiaxial loading: experiments and calculations[J]. Fatigue & Fracture of Engineering Materials & Structures, 2001, 24(5): 339-355.[12] Jen Y M, Chang L Y, Fang C F. Assessing the fatigue life of butt-welded joints under oblique loading by using local approaches[J]. International Journal of Fatigue, 2008, 30(4): 603- 613.[13] B?ckstr?m M, Siljander A, Kuitunen R,et al. Multiaxial fatigue experiments of square hollow section tube-to-plate welded joints[C]∥Proceedings of the First North European Engineering and Science Conference (NESCO I), 1997: 163-177.[14] Sonsino C M. Multiaxial fatigue of welded joints under in-phase and out-of-phase local strains and stresses[J]. International Journal of Fatigue, 1995, 17(1): 55-70.[15] Sonsino C M, Kueppers M. Multiaxial fatigue of welded joints under constant and variable amplitude loadings[J]. Fatigue & Fracture of Engineering Materials & Structures, 2001, 24(5): 309-327.[16] Siljander A, Kurath P, Lawrence F V. Non-proportional fatigue of welded structures[J]. Advances in fatigue lifetime predictive techniques, ASTM STP, 1992, 1122: 319-338.[17] Razmjoo G R. Fatigue of load-carrying fillet welded joints under multiaxial loading[J]. Fatigue: core research from TWI, Woodhead, UK, 2000(27): 63-99.[18] Lawrence F V, Burk J D, Yung J Y. Influence of residual stress on the predicted fatigue life of weldments[C]∥ASTM. Residual Stress Effects in Fatigue. West Conshohocken: ASTM special technical publication, 1982: 33-43.
|