Analysis of microstructure and properties and nanoindentation of nickel-based alloy heterogeneous fusion welded 9Ni steel joint
-
摘要: 采用对接焊方法,以NiCrMo-6焊条作为填充材料,对板厚9 mm的9Ni钢母材进行了焊接试验.通过光学显微镜(OM)、扫描电子显微镜(SEM)和能谱分析(EDS)等方法对熔焊接头组织进行观察分析.采用纳米压痕技术对熔焊接头中母材(BM)、粗晶热影响区(CGHAZ)、熔合区(FB)和焊缝中心区域(WM)各微区之间的微观组织与力学性能的关系进行表征.辅以接头原位拉伸试验,确定焊接薄弱区.结果表明,焊缝柱状组织中,Fe-Cr,Ni-Cr-Fe等主要析出相在奥氏体基体上弥散分布,热影响区组织以粗板条马氏体及贝氏体为主,板条间逆变奥氏体相已基本消失.纳米压痕试验结果显示,熔焊接头具有突出的抗塑性流变变形能力,粗晶热影响区强度最高,而熔合区强度最低.拉伸断口观察试验进一步显示熔合线区域受撕裂应力影响易发生断裂,为接头薄弱区.Abstract: Adopting the butt welding method and using NiCrMo-6 electrode as the filler material, the welding experiment of the 9 mm thickness 9Ni steel base metal was carried out. Through optical microscope (OM), scanning electron microscope (SEM) and energy spectrum analysis (EDS), etc. Method Observe and analyze the structure of fusion welded joint. Nanoindentation technology is used to improve the microstructure and mechanical properties of the base metal (BM), coarse-grain heat affected zone (CGHAZ), fusion zone (FB) and weld center area (WM) in the fusion welded joint. The relationship is characterized. Supplemented by the joint in-situ tensile test to determine the weakened area. The results show that: in the columnar structure of the weld, Fe-Cr, Ni-Cr-Fe and other main precipitation phases are dispersed on the austenite matrix, and the heat-affected zone is mainly composed of coarse lath martensite and bainite. The inverted austenite phase between the bars has basically disappeared. The nanoindentation test results show that the welded joint has outstanding resistance to plastic rheological deformation. The coarse-grain heat-affected zone has the highest strength, while the fusion zone has the lowest strength. The tensile fracture observation test further shows that the fusion line area is prone to tearing stress. Fracture is the weak area of the joint.
-
Keywords:
- 9% nickel steel /
- welded joint /
- microstructure /
- nanoindentation
-
-
表 1 9%Ni钢化学成分(质量分数,%)
Table 1 Chemical composition of 9% nickel steel
材料 C Si Mn Ni S P ASME ≤0.13 0.13 ~ 0.45 ≤0.98 8.4 ~ 9.6 ≤0.035 ≤0.035 9Ni%钢 0.021 0.25 0.72 9.18 0.003 0.002 表 2 焊材熔敷金属化学成分(质量分数,%)
Table 2 Chemical composition of self-developed welding consumables
C Mn P S Si Cr Mo Fe W Nb+Ta Ni 0.01 3.02 0.003 0.005 0.37 14.22 5.72 5.80 1.66 0.86 余量 表 3 扫描电镜能谱分析
Table 3 Energy spectrum analysis data table
位置 质量分数w(%) 原子分数a(%) Ni Cr Mo Fe Nb Ni Cr Mo Fe Nb A 66.39 13.22 4.51 15.87 — 65.89 14.82 2.74 16.56 — B 67.06 12.08 5.54 15.32 — 66.93 13.61 3.38 16.08 — C 54.83 10.64 8.13 12.09 14.31 58.59 12.84 5.32 13.58 9.67 表 4 接头纳米压痕力学性能
Table 4 Mechanical properties of joint nanoindentation
位置 塑性流动应力指数
n屈服强度
ReL/MPa抗拉强度
Rm/MPa母材 7.19 846.4 1 317.8 粗晶热影响 6.17 1 193.7 1 826.5 熔合区 1.20 1 092.6 1 657.9 焊缝中心 5.32 854.2 1 328.6 表 5 拉伸断口选区元素成分含量
Table 5 elemental composition content table of tensile fracture selection area
编号 Nb Mo Ti Cr Mn Fe Ni Si A — 1.64 1.24 25.73 7.29 8.48 55.82 — B 4.12 8.67 0.15 14.85 3.98 10.89 56.25 1.24 -
[1] Hamad ur Rehman, Karsten D, Steffen N, et al. Nanoindentation studies of the mechanical properties of the phase in a creep deformed Re containing nickel-based superalloy[J]. Materials Science & Engineering: A, 2015, 634: 202 − 208.
[2] Chen Shuangjian, Ye Xiangxi, Yu Kun, et al. Microstructure and mechanical properties of UNS N10003 alloy welded joints[J]. Materials Science & Engineering: A, 2017, 682: 168 − 177.
[3] Maier P, Richter A, Faulkner R G, et al. Application of nanoindentation technique for structural characterisation of weld materials[J]. Materials Characterization, 2002, 48: 329 − 339. doi: 10.1016/S1044-5803(02)00274-7
[4] Thai-Hoan P, Jung J Kim, Seung-Eock Kim. Estimation of microstructural compositions in the weld zone of structural steel using nanoindentation[J]. Journal of Constructional Steel Research, 2014, 99: 121 − 128. doi: 10.1016/j.jcsr.2014.04.011
[5] Thai-Hoan P, Seung-Eock K. Nanoindentation for investigation of microstructural compositions in SM490 steel weld zone[J]. Journal of Constructional Steel Research, 2015, 110: 40 − 47. doi: 10.1016/j.jcsr.2015.02.020
[6] Yong-Keun Yoon, Jae-Hoon Kim, Kyu-Taek Shim. Mechanical characteristics of 9% Ni steel welded joint for LNG storage tank at cryogenic[J]. International Journal of Modern Physics: Conference Series, 2012(6): 355 − 360.
[7] 常川川, 张田仓, 李菊, 等. 高氧TC4/TC17钛合金线性摩擦焊接头组织特征及力学性能[J]. 焊接学报, 2019, 40(12): 109 − 114, 120. Chang Chuanchuan, Zhang Tiancang, Li Ju, et al. Microstructure and mechanical properties of high-oxygen TC4/TC17 titanium alloy linear friction welded joints[J]. Transactions of the China Welding Institution, 2019, 40(12): 109 − 114, 120.
[8] 刘鸣宇, 鲁艳红. 焊接热循环对低合金钢组织及性能的影响[J]. 压力容器, 2019, 36(8): 7 − 11. doi: 10.3969/j.issn.1001-4837.2019.08.002 Liu Mingyu, Lu Yanhong. The effect of welding thermal cycle on the microstructure and properties of low alloy steel[J]. Pressure Vessel, 2019, 36(8): 7 − 11. doi: 10.3969/j.issn.1001-4837.2019.08.002
[9] Wei Guoqian, Odsuren Ochbileg, Yue Xudong, et al. Combine S-N curve and fracture mechanics for fatigue life analysis of welded structures[J]. China Welding, 2019, 28(4): 39 − 45.
[10] 陈虎, 王骞, 张鹏, 等. 9Ni钢大型LNG低温储罐施工及焊接技术[J]. 中国化工装备, 2019, 21(3): 24 − 35. doi: 10.3969/j.issn.1671-0525.2019.03.007 Chen Hu, Wang Qian, Zhang Peng, et al. Construction and welding technology of 9Ni steel large-scale LNG low-temperature storage tank[J]. China National Chemical Industry, 2019, 21(3): 24 − 35. doi: 10.3969/j.issn.1671-0525.2019.03.007
[11] 王志海, 钱江蓉, 兰欣, 等. 纳米压痕法测量SAC305焊料的力学性能[J]. 电子元件与材料, 2020, 39(6): 72 − 78. Wang Zhihai, Qian Jiangrong, Lan Xin, et al. Mechanical properties of SAC305 solder measured by nanoindentation method[J]. Electronic Components and Materials, 2020, 39(6): 72 − 78.
[12] Peng G, Ma Y, Hu J, et al. Nanoindentation hardness distribution and strain field and fracture evolution in dissimilar friction stir-welded AA 6061-AA 5A06 aluminum alloy joints[J]. Advances in Materials Science and Engineering, 2018, 6: 1 − 11.
[13] Stilwell N A, Tabor D. Elastic recovery of conical indentations[J]. Proceedings of the Physical Society, 1961, 78(2): 169.
[14] Dao M, Chollacoop N, Van Vliet K, et al. Computational modeling of the forward and reverse problems in instrumented sharp indentation[J]. Acta Materialia, 2001, 49(19): 3899 − 3918. doi: 10.1016/S1359-6454(01)00295-6
[15] Cheng G, Choi K S, Hu X, et al. Determining individual phase properties in a multi-phase Q & P steel using multi-scale indentation tests[J]. Materials Science & Engineering: A, 2016, 652: 384 − 395.
[16] 刘芳芳, 付魁军, 王佳骥, 等. 船板钢第二相粒子在大热输入焊接热循环中的变化[J]. 上海金属, 2018, 40(2): 7 − 10, 18. doi: 10.3969/j.issn.1001-7208.2018.02.002 Liu Fangfang, Fu Kuijun, Wang Jiaji, et al. Changes of second-phase particles of ship plate steel in the heat cycle of large heat input welding[J]. Shanghai Metals, 2018, 40(2): 7 − 10, 18. doi: 10.3969/j.issn.1001-7208.2018.02.002
[17] 尹桂丽, 周立岱, 林成. 微合金钢中第二相粒子在焊接HAZ溶解行为的价电子结构分析[J]. 辽宁工业大学学报(自然科学版), 2014, 34(2): 124 − 127. Yin Guili, Zhou Lidai, Lin Cheng. Valence electron structure analysis of the dissolution behavior of the second phase particles in microalloyed steel in welding HAZ[J]. Journal of Liaoning University of Technology (Natural Science Edition), 2014, 34(2): 124 − 127.
-
期刊类型引用(5)
1. 张翅,李帅,李米哲,秦敏,刘小飞,董晓磊. 刮板输送机机头、机尾架轴口焊接工艺研究与应用. 煤矿机械. 2025(06): 125-127 . 百度学术
2. 李杰,周鹏,惠媛媛. 两种常见焊接接头的机器人焊接工艺. 焊接. 2020(06): 51-56+64 . 百度学术
3. 刘黎明,周彦彬. 脉冲MAG-TIG双电弧打底单面焊双面成形机制分析. 焊接学报. 2019(04): 8-15+161 . 本站查看
4. 刘黎明,周彦彬. Mechanism analysis of free formation of backing weld by the pulsed MAG-TIG double arc tandem welding. China Welding. 2019(04): 8-15 . 百度学术
5. 周彦彬,史吉鹏,刘黎明. MAG-TIG双电弧共熔池热源打底焊接自由成形研究. 机械工程学报. 2018(10): 78-84 . 百度学术
其他类型引用(9)